高二数学知识点归纳整理

孙小飞

高二数学重点知识点梳理

简单随机抽样的定义:

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:

(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为

;在整个抽样过程中各个个体被抽到的概率为

(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

简单抽样常用方法:

(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.

(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.

高二数学重点知识点

函数的性质:

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;

f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

判别方法:定义法,图像法,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式。

人教版高二数学知识点总结

在中国古代把数学叫算术,又称算学,最后才改为数学。

1.任意角

(1)角的分类:

①按旋转方向不同分为正角、负角、零角.

②按终边位置不同分为象限角和轴线角.

(2)终边相同的角:

终边与角相同的角可写成+k360(kZ).

(3)弧度制:

①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.

②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.

③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.

④弧度与角度的换算:360弧度;180弧度.

⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.

2.任意角的三角函数

(1)任意角的三角函数定义:

设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.

(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.

3.三角函数线

设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.