数学教学的利弊与改进思考【1】
回想《角的认识》这一教学内容,它是在学生直观认识了长方形、正方形、三角形等平面图形的基础上学习的,这部分内容是学生今后进一步学习角的重要基础,也是培养学生空间观念的重要内容之一。由于学生对角的认识生活经验不多,教学有一定的难度。本节课根据学生实际和新课标精神,创造性使用教材,精心设计教学环节,取得了较好的效果。反思整个教学过程,感觉本节课体现了以下几点:
1、敢于放手,通过学生的主动探究、同桌小组交流,使学生经历了学习过程。
数学课程标准指出,在数学教学中应尽可能的给学生提供交流的活动,使他们能够在活动中感受别人的思维方法和思维过程,以改变和完善自己的认知。因此本节课在教学中充分的体现了这一点。通过几个开放性问题的设计,如:移动角的一条边,你发现了什么?观察这三个角你发现有什么共同的特点?给学生提供了自主探究和小组交流的时间和空间,同时拓宽了学生的思路,体现了数学学习的个性,学生通过操作、观察,经历了认识角的过程。正是因为有了教师的放手,才有了学生动口、动手、动脑的机会,学生真正会成为了学习的主人。
2、根据教学内容和学生实际,创造性的使用教材。
教材是知识的载体,在充分把握教材知识点的前提下,灵活处理教材内容,创造性的使用教材。在教学角的大小与角的张口有关与边的大小无关时,我制作一个活动课件,角的大小一样而边长各异的三个角,先让学生猜猜它们的大小,然后再演示,了学生的积极性一下子调动了起来,发散了学生的思维,这一情景的创设为后面的体验活动打下了良好的基础,同时拉进了数学与生活的联系。
数学教学反思优缺点和改进【2】
一、创新教学,力求高效。
教师都是课堂教学的实践者,为保证新课程标准的落实,我把课堂教学作为有利于学生主动探索的数学学习环境,使学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程,课前精心备课,撰写教案,实施以后趁记忆犹新,回顾、反思写下自己执教时的切身体会或疏漏,记下学生学习中的闪光点或困惑。同时积累教学经验,找出不足,有利于改进课堂教学和提高教师的教学水平。
在教学中努力处理好数学教学与现实生活的联系,努力处理好应用意识与解决问题的重要性,重视培养学生应用数学的意识和能力。重视培养学生的探究意识和创新能力。
在数学课上,有思维深化,也有正误辩论,有积极的合作。因此努力改变自己的教学方法,努力使学生走进自己的课堂,使之乐思、善学,真正成为课堂的主人。为此,作为数学教师要以创新求发展,一步转变教育观念,坚持“以人为本,促进学生全面发展,打好基础,培养学生创新能力”,努力实现教学高质量,课堂高效率。
二、创新评价,力求发展。
把评价作为全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段。
对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,定量采用等级制,定性采用评语的.形式,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力。使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。作为一名数学教师从点滴入手,了解学生的认知水平,查找资料,充分利用共享资源,精心备课,努力创设宽松愉悦的学习氛围,激发兴趣,教给了学生知识,更教会了他们求知、合作、竞争的意识,同时培养学生具备正确的学习态度,良好的学习习惯及方法,使学生学得有趣,学得实在,学有所得。
一分耕耘,一份收获。教学工作苦乐相伴。我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,做好本职工作。
数学教学反思优缺点和改进【3】
新课标明确告诉我们,评价已不再是教师的专利了,应把评价的主动权还给学生,数学新课标教学反思。让学生在和谐的学习氛围中互相质疑、互相欣赏、互相帮助才能把学生吸引住在多层次学习活动中,每一环节都有学生对同伴的质疑与帮助。学生回答得好,其他的学生也能热情地给予掌声肯定。在自我评价中,有的学生自信地肯定了自己的表现,有的学生谦虚地对自己提出了希望。在质疑环节中,学生提出了许多问题有价值的问题,体现了学生学习的主体性。这样,让学生在学习过程中互相欣赏、互相评价、相互帮助和自我评价、自我激励,使学生既学会了学习又学会了做人,数学学习的情感、态度、价值观得到了较好的体现。
1、数学教学不能只凭经验
从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依赖经验教学实际上只是将教学实际当作一个操作性活动,即依赖已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和一定的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。这样从事教学活动,我们可称之为“经验型”的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、这会社会阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。
2.对学数学的反思
当学生走进数学课堂时,他们的头脑并不是一张白纸——对数学有着自己的认识和感受。教师不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。
3.对教数学的反思
教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。
数学教学反思优缺点和改进【4】
我是中途接手初三数学教学工作的,反思一学期的教学总感到有许多的不足与思考。从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。
在平时的教学过程中,我们要求学生数学作业本必须及时上交,目的是为了及时发现,及时设法解决学生作业中存在的问题,认真落实订正的作用,将反馈与矫正要落到实处,切实抓好当天了解、当天解决、矫正到位,也就是说反馈要适时,矫正要到位。另外我们还应注意反馈来的信息是否真实,矫正的方法是否得力,因为反馈的信息虚假或不全真实,那么我们就发现不了问题,就不能全面地了解学生的情况,也就不会采取及时、正确的矫正措施。我认为要注意以下几个方面:
一、注意反馈矫正的及时性
课堂教学中应注意引导学生上课集中精力,勤于思考,积极动口、动手。可利用提问或板演等多种方式得到学生的反馈信息,一般我们应把提问、解答、讲评、改错紧密的结合为一体,不要把讲评和改错拖得太长。最好当堂问题当堂解决,及时反馈在一日为好。
二、注意反馈矫正的准确性
在教学中我们必须经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而尝到学习进步的甜头。
三、注意反馈矫正的灵活性
我们在教学中可采用灵活多样的反馈矫正形式。咳提前设计矫正方案,也可预测学生容易出错的地方,在获取信息后,认真分析其问题的实质,产生问题的原因,然后有针对性地实施矫正方案。在作业的检查过程中,要求进一步落实学生是否存在抄作业现象,是否认真订正作业。总之,反馈矫正一定要落在实处。
我们要主动辅导,及时令其矫正。进一步培养学生的主动性和自觉性,当然,如果我们只强调学生的主动和自觉,而不注意自身的主动和自觉,结果也会不如人意。
总之,反馈与矫正在教学中总是循环往复的,不断加强反馈与矫正,对于我们的教与学生的学必将起到一定的推动作用。因此,我们在平时的教学中应注重反馈与矫正。
数学教学反思优缺点和改进【5】
1、理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念。
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项。
(3)通过通项公式认识等比数列的性质,能解决某些实际问题。
2、通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3、通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教学建议
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。