高考理科数学重要知识点归纳整理

阿林

高考数学知识点归纳

概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以

P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;

2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;

(2)事件A不发生且事件B发生;

(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;

(1)事件A发生B不发生;

(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。三.古典概型及随机数的产生

(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

高三数学复习重要知识点

1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

高三高考数学复习重要知识点

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

若A?B,则p是q的充分条件。

若A?B,则p是q的必要条件。

若A=B,则p是q的充要条件。

若A?B,且B?A,则p是q的既不充分也不必要条件。

三、知识扩展

1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。