高一数学教案免费下载最新

黄飞

高一数学教案免费下载2021最新1

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一.教学过程:

1.使学生熟练掌握函数的概念和映射的定义;

2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。

二.教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数-,在集合B中都有确定的数()f-和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:

(),yf--A

其中,-叫自变量,-的取值范围A叫作定义域(domain),与-的值对应的y值叫函数值,函数值的集合{()|}f--A?叫值域(range)。显然,值域是集合B的子集。

注意:

①“y=f(-)”是函数符号,可以用任意的字母表示,如“y=g(-)”;

②函数符号“y=f(-)”中的f(-)表示与-对应的函数值,一个数,而不是f乘-.

2.构成函数的三要素定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素-,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4.区间及写法:

设a、b是两个实数,且a

(1)满足不等式a-b??的实数-的集合叫做闭区间,表示为[a,b];

(2)满足不等式a-b??的实数-的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法①解析法②列表法③图像法

高一数学教案免费下载2021最新2

学习目标1.掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

2.掌握标准方程中的几何意义

3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

一、预习检查

1、焦点在-轴上,虚轴长为12,离心率为的双曲线的标准方程为.

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.

3、双曲线的渐进线方程为.

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.

二、问题探究

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.

探究2、双曲线与其渐近线具有怎样的关系.

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.

例1根据以下条件,分别求出双曲线的标准方程.

(1)过点,离心率.

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.

例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.

例3(理)求离心率为,且过点的双曲线标准方程.

三、思维训练

1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.

2、椭圆的离心率为,则双曲线的离心率为.

3、双曲线的渐进线方程是,则双曲线的离心率等于=.

4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.

四、知识巩固

1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.

2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.

3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.

5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.

高一数学教案免费下载2021最新3

学习目标1.能根据抛物线的定义建立抛物线的标准方程;

2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

3.会求抛物线的标准方程。

一、预习检查

1.完成下表:

标准方程

图形

焦点坐标

准线方程

开口方向

2.求抛物线的焦点坐标和准线方程.

3.求经过点的抛物线的标准方程.

二、问题探究

探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.

例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.

三、思维训练

1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

2.抛物线的焦点到其准线的距离是.

3.设为抛物线的焦点,为该抛物线上三点,若,则=.

4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.

5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

四、课后巩固

1.抛物线的准线方程是.

2.抛物线上一点到焦点的距离为,则点到轴的距离为.

3.已知抛物线,焦点到准线的距离为,则.

4.经过点的抛物线的标准方程为.

5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案免费下载2021最新4

教学准备

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理垂直的问题;

4.掌握向量垂直的条件.

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学过程

1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).

并规定0向量与任何向量的数量积为0.

×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?

(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.

高一数学教案免费下载2021最新5

教学准备

教学目标

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4.掌握向量垂直的条件.

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

一、复习引入:

1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业

P107习题2.4A组2、7题

板书