29.2三视图:教案
一、自主探究(看书理解、记忆,把重点知识句划在书上,并把课后简单练习完成在书上)
1.回顾: 叫正投影.
2.当我们从某一个角度观察一个物体时, 叫做物体的一个视图.视图也可以看做 .其中正对着我们的叫做 ,正面下方的叫做 ,右边的叫做 .
3.一个物体在三个投影面内同时进行正投影, ,叫做主视图; 叫做俯视图; 叫做左视图.
4.将三个投影面展开在一个平面内,得到这一物体的一张三视图.
注意:(1)主视图反映的是物体的长和高;俯视图反映的是物体的长和宽;左视图反映的是物体的宽和高. 因此,在画三种视图时,主视图与俯视图要长对正,主视图与左视图要高平齐,俯视图与左视图要宽相等.
(2)三视图与投影密切相关,某些物体的三视图实际上是该物体在一定条件下所形成的平行投影,某些物体的主视图、俯视图、左视图可以看成在一束平行光线分别从物体的正面,上面,左面照射下,在垂直于这一方向的平面上所形成的投影.
二、合作探究(自主学习时完成,课上交流展示)
1. 小明从正面观察如图1所示的两个物体,看到的是( )
2. 如图2,水杯的俯视图是( )
3. 我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图3,从图的左面看这个几何体的所得左视图是( )
三、探究应用(课上完成并交流展示)
例1. 画出右图所示的一些基本几何体的三视图.
解:
例2. 画出如图所示的支架(一种小零件)的三视图.支架的两个台阶的高度和宽度都是同一长度出它的三视图.
解:
(补充)例. 右图是一根钢管的直观图,画出它的三视图.
解:
总结:基本几何体包括圆柱、圆锥、球、直棱柱、圆台,它们的三视图是画复杂几何体三视图的基础.基本几何体的三视图:
(1)正方体的三视图都是正方形.
(2)圆柱的三视图中有两个是长方形,另一个是圆.
(3)圆锥的三视图中有两个是三角形,另一个是圆和一个点.
(4)四棱锥的三视图中有两个是三角形,另一个是矩形和它的对角线.
(5)球体的三视图都是圆形.
四、巩固再现:P97 练习
五、能力提升:
1. 右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )
2. 如图所示,画出该物体的三视图.
六、探究小结:
1.你学会了什么?
29.2几何体的三视图:课文练习
14.(曲靖中考)将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是( )
A.主视图相同 B.左视图相同
C.俯视图相同 D.三种视图都不相同
15.一位美术老师在课堂上进行立体模型素描教学 时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体 的三视 图(从正面、左面、上面看得到的视图).
16.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.
综合题
17.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由
29.2由三视图确定几何体的表面积或体积:同步练习
1.一个几何体的三视图(单位:厘米).
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求 出这个线路的最短路程.