北师大版六年级上册数学知识点必看

黄飞

北师大版六年级数学上册知识点

1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.

3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:

d=2r

r =1/2d

用文字表示为:

半径=直径÷2

直径=半径×2

9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C=πd 或C=2πr

圆周长=π×直径

圆周长=π×半径×2

12、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

圆的面积公式:S=πr2。

14.圆的面积公式:S=πr2 或者S=π(d/2)2 或者S=π(C÷(2π))2≈

15.在一个正方形里画一个的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是

S=πR2-πr2

或 S=π(R2-r2)。

(其中R=r+环的宽度.)

19.半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

半圆的周长公式:

C=πd/2+d

或 C=πr+2r

圆周长的一半=πr

20.半圆面积=圆的面积÷2

公式为:S=πr2/2

21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

圆周长和直径的比是π:1,比值是π

圆周长和半径的比是2π:1,比值是2π

23.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;

当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.

25.当长方形,正方形,圆的周长相等时,圆的面积,长方形的面积最小

26.扇形弧长公式:扇形的面积公式:

S=nπr2/360

(n为扇形的圆心角度数,r为扇形所在圆的半径)

27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

28.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形

有3条对称轴的图形是:等边三角形

有4条对称轴的图形是:正方形

有无数条对称轴的图形是:圆、圆环。

29.直径所在的直线是圆的对称轴。

31、永远记住要带单位,周长是(例如:cm),面积是平方(例如:cm2),体积是立方(例如:cm3)。

32、圆的周长:

3.14×1=3.14 3.14×2=6.28

3.14×3=9.42 3.14×4=12.56

3.14×5=15.7 3.14×6=18.84

3.14×7=21.98 3.14×8=25.12

3.14×9=28.26 3.14×10=31.4

33、圆的面积:

3.14×12=3.14 3.14×22=12.56

3.14×32=28.26 3.14×42=50.24

3.14×52=78.5 3.14×62=113.04

3.14×72=153.86 3.14×82=200.96

3.14×92=254.34 3.14×102=314

北师大版六年级数学知识点

1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

①如果是同一级运算,按照从左到右的顺序依次计算。

②如果是分数连乘,可先进行约分,再进行计算;

③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

2、解决问题

(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:

第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”

第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

(3)用方程解决稍复杂的分数应用题的步骤:

①要找准单位“1”。

②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

③设未知量为X,根据等量关系式,列出方程。

④解答方程。

(4)要记住以下几种算术解法解应用题:

①对应数量÷对应分率=单位“1” 的量

②求一个数的几分之几是多少,用乘法计算。

③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

3、要记住以下的解方程定律:

加数 +加数 = 和;

加数 = 和–另一个加数。

被减数–减数 = 差;

被减数=差+减数;

减数=被减数–差。

因数×因数 = 积;

因数 = 积÷另一个因数。

被除数÷除数 = 商;

被除数=商×除数;

除数=被除数÷商。

4、绘制简单线段图的方法:

分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:

①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。

③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。

④问题所求要标出“?”号和单位。

5、补充知识点

分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

分数乘整数:数形结合、转化化归

倒数:乘积是1的两个数叫做互为倒数。

分数的倒数

找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。

小数的倒数

普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

分数除法:分数除法是分数乘法的逆运算。

分数除法计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

北师大版小学六年级数学上册期中复习题

一、填空。(每空1分,20分)

1.要画一个周长是25.12厘米的圆,圆规两脚尖应张开( )厘米,画出的圆的面积是( )平方厘米。

2.一根绳子长20米,用去15米,用去( )%,还剩( )%。

3.把15.5%后的%去掉,这个数就( )。

4.()8 =( )%=0.5=20÷( )=( )折=( )成

5.一个挂钟分针长5厘米,它的尖端走了一圈是( )厘米。

6.用正负数表示下面的数量。

(1)零下15摄氏度记作( )℃

(2)小刚进行象棋比赛,如果他负2局记作-2,那他胜5局记作( )。

7. 圆的半径扩大到原来的3倍,周长扩大到原来的( )倍。面积扩大到原来的( )倍。

8. 把5克盐溶于95克水中,盐占盐水的( )% 。

9.用同样长铁丝围成长方形、正方形和圆形,则围成的( )面积。

10. 两个圆直径的比是3:5,周长的比是( ),面积比是( )

11. 一件衣服打7折,就是比原价降( )%。

二、巧思妙想,认真选择。(每空2分,10分)

1.100比80大( )。

A.20% B.25% C.80% D.60%

2.用一个边长是2分米的正方形纸,剪一个尽可能大的圆,这个圆的面积是( )平方分米。

A. 12.56 B. 3.14 C. 6.28 D. 无法确定

3.在一个长8 厘米,宽6厘米的长方形中,剪下一个的圆,这个圆的面积是( )平方厘米。

A.18.84 B.28.26 C.25.12 D.50.24

4. 一件衣服250元,先降价20%,再在降价后的基础上涨价20%,现在的价格比原来的价格( )

A.降低了 B.升高了 C.没有变 D.无法计算

5.画一个周长是18.84厘米的圆,圆规的两脚之间的距离应该是( )厘米。

A、3 B、6 C 、9 D、12

三、请你判是非(对的在括号里打“√”,错的打“×”。)(5分)

1. 直径是圆的对称轴。 ( )

2. 大圆的圆周率大于小圆的圆周率。 ( )

3. 如果甲比乙多20%,则乙比甲一定少20%。( )

4. 在100克水中放入10克盐,盐的重量占盐水重量的10%。( )

5. 一桶食用油重5千克,用去了45 ,还剩下415 千克。 ( )

四、超级神算:(38分)

1.直接写得数:(5分)

3.14×5= 2×80%= 180%-45 = 3.14×0.12=

0.125×32= 63×10%= 19.1-63%= 27 ×2.8=

20-738 = 300×(1+20%)=

2、能简便计算的简便计算。(18分)

( - )÷ 24×( + ) ( + - )÷

( - )×4×9 ÷9+ × 42÷( ÷ )

2、解方程。(9分)

X-60%X=160 0.8X+4.2=17.8 150-15X=30

五、运用知识,灵活解题。(27分)

1、一根长12.56米的绳子正好可以绕一棵树的树干10圈。这棵树树干的横截面的面积大约是多少平方厘米?(5分)

2、圆的周长为12.56米,那么这个圆的半径是多少米?面积是多少平方米?(5分)

3、高波家买了1000元国家建设债券,定期5年,如果年利率是6.34%,到期时一共可以取出多少元?(5分)

4、一根绳子长25米,第一次剪去全长的18%,第二次前剪去全长的22%,还有多少米?(5分)

5、一块正方形土地的周长是80米,在里面围出一个的圆种花,其他边角地上种草坪。种草坪的面积是多少平方米?(7分)