高二数学学习方法参考
1、反思解题本身是否正确
由于在解题的过程中,可能会出现这样或那样的错误,因此在解完一道题后就很有必要进行审查自己的解题是否混淆了概念,是否忽视了隐含条件,是否特殊代替一般,是否忽视特例,逻辑上是否有问题,运算是否正确,题目本身是否有误等。这样做是为了保证解题无误,这是解题后最基本的要求,真正认实到解题后思考的重要性。
2、反思有无其它解题方法
对于同一道题,从不同的角度去分析研究,可能会得到不同的启示,从而引出多种不同的解法,当然,我们的目的不在于去凑几种解法,而是通过不同的观察侧面,使我们的思维触角伸向不同的方向,不同层次,发展学生的发散思维能力。例如对函数Y=(X^2-1)/(X^2+1)求值域,那么我们做了判别式法后,想想还有哪些方法可以解决此问题呢?比如反函数法,换元法,分离变量法.把这些方法想到了最后一步就是拿出你的数学财富本,把这几种方法总结一下,哪种数学模型的求值域可以用这种方法.
3、反思结论或性质在解题中的作用
有些题目本身可能很简单,但是它的结论或做完这道题目本身用到的性质却有广泛的应用,如果仅仅满足于解答题目的本身,而忽视对结论或性质应用的思考、探索,那就可能会“拣到一粒芝麻,丢掉一个西瓜“。一道题中本身必然包含了具体的数学知识和方法,你要通过这道题把本题所蕴涵的知识和方法提炼出来,总结归纳.像函数,研究的不外乎是定义域,值域,单调性,最值等.每做一个题就可以把这些东西复习一下,这样才能对的起你做的题.
4、反思题目能否变换引申
改变题目的条件,会导出什么新结论;保留题目的条件结论能否进一步加强;条件作类似的变换,结论能扩大到一般等等。象这样富有创造性的全方位思考,常常是发现新知识、认识新知识的突破口。
5、反思解决问题的思维方法能否迁移
解完一道题目后,不妨深思一下解题程序,有时会突然发现:这种解决问题的思维模式竟然体现了一训重要的数学思想方法,它对于解决一类问题大有帮助。这样,有利于深化对数学知识和方法的认识,真正领悟到数学的思想和知识的结构,促进其创造性思维能力的发展,从而充分发挥自己的智能和潜能。
高二数学学习方法推荐
制定计划和奋斗目标
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。
在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。
严防题海战术
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
归纳数学大思维
数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。
听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。
积累考试经验
本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。
高二年级数学学习方法
一、抓好基础。
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会使解题速度慢,逻辑混乱、叙述不清。
那么如何抓基础呢?
1、看课本;
2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。
3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化?
4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。
5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。
二、制定好计划和奋斗目标。
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。