最新小学一年级数学人教版下册教案

孙小飞

最新小学一年级数学人教版下册2021教案1

教学目标:

1、探索并掌握两位数加法(不进位)的计算方法,学会用竖式计算两位数加法(不进位)。

2、能运用加法解决一些简单的问题。

教学重点:

掌握加法笔算的对位方法,掌握运算顺序。

教学难点:

理解“对位”的道理。

教学过程:

一、复习旧知。

师:同学们,今天我们来学习一百以内的不进位加法。

首先,我们先来复习我们之前就学过的一个知识,就是十以内的加法。

教师随机说出十以内的加法,同学快速说出答案。这样经过大约五分钟的反复练习,使同学对之前学的十以内的加法进行很好的复习和巩固,为新知识的学习打下基础。

二、学习新知。

1、教学例1。

师:大家翻到课本的第11页,看这幅图。

通过观察图画,组织学生讨论从图画中可以得到哪些信息,教师进行点评和总结。

师:大家再翻到课本的第12页,看例题1。

在学生看题的同时,板书:“例1、二(1)班学生和本班的带队老师一共多少人?” 教师引导学生审题,分析题意,找出有用的数据。

师:现在谁能告诉我,这个题怎么算? 根据学生回答,板书算式:35+2=。

师:很好,现在我们已经列出了算式,怎么计算呢,哪位聪明的同学能告诉我? 同学们积极发言,教师点评,总结不同的算法。

师:很好,大家都会用自己的方法来计算。今天老师要教大家一个新的方法,那就是列竖式计算,大家看黑板。

师:我们首先用数小棒的方法来计算这道题。看书上的图,大家讨论一下怎么用数小棒的方法来算。

根据学生的讨论进行总结,重点突出在数小棒的方法中,将整十的和不足十的零散小棒分开计算。

师:现在我们学习怎样写竖式,其实就是把数小棒的方法用数字表示出来。大家看黑板。

教师板书竖式:

35+ 2

师:大家看黑板,看看这个竖式有什么特点。我们一起来讨论一下。

根据学生的讨论结果进行总结和点评,归纳出加法竖式的几个特点:一是个位与个位对齐,十位与十位对齐;二是加号和横线缺一不可,加号表示加法,而横线是把加数与和分隔开来。

师:现在我们知道了竖式的写法,接下来我们看一看怎样计算。

边板书边讲解:从个位开始加,将上下两个数的个位加起来,写在横线下,然后再加十位,和写在横线下。注意引导学生通过数小棒的计算过程理解加法竖式的运算方法。注意强调竖式的计算应从个位加起,先算个位再算十位,得出的和也应该与加数各位对齐。

在讲解例题结束后,再次强调和总结不进位加法竖式的计算方法和书写规范。

2、巩固练习。

师:现在大家都应该会用竖式计算两位数加一位数的不进位加法了,我现在就请几个同学上来完成做一做的练习来检验一下大家都有没有学会,看一看我们能不能把新学的知识运用起来。

请五位同学上讲台做题。其他同学在练习本上做。

32+6=24+3=5+43=21+3=4+33=

强调:列竖式、注意书写规范、计算正确。

对五位同学做的进行点评,好的予以表扬,不好的指出错在了哪里,进行更正,并强调正确的书写规范。

3、教学例2。

师:请大家看课本13页的例题2。

板书:“例2、二(1)班和二(2)班一共有多少名学生?” 教师引导同学分析题意,找出有用数据,并列式。 板书算式:35+32=。

师:我们之前已经学习了怎样用竖式来计算加法,只是我们之前算的都是一个两位数加一个一位数,现在两个加数都是两位数,该怎么用竖式计算呢?同学们先在练习本上试着列竖式计算一下。

教师根据学生列竖式计算的情况,总结计算方法,教师板书竖式:

35+ 3267

4、小结。

两位数加两位数不进位加法列竖式计算的方法,着重强调几点:各位对齐、加号与横线、从个位加起。

师:相信同学们现在也会计算两位数加两位数了,我们就来练习一下。 请四位同学上讲台算做一做的题。其他同学在练习本上计算。

33+43=24+61=53+22=37+40=

根据同学做的情况进行讲评。再次强调不进位加法竖式的书写规范和计算方法。

三、总结。

最新小学一年级数学人教版下册2021教案2

在本单元之前,学生已经基本掌握了整数的四则计算,能进行连加、连减、加减混合以及连乘、连除、乘除混合等同级的两步运算,还初步接触过乘加、乘减。本单元教学混合运算,内容包括四则混合运算顺序和列综合算式解答两步计算的实际问题,这两部分内容是相辅相成、有机结合的。

计算工具在当今社会和现实生活中已经相当普及了,人们已经不大需要使用纸笔进行大数目、多步数的计算。但是,四则计算的原理与方法、混合运算的顺序、步骤仍然是基础教育阶段的重要教学内容。因为这些知识及其思想方法是学生继续学习其他数学知识的基础,是更好地使用计算工具的前提,也是发展数学思考、提高学生智力水平的载体。

整数四则混合运算以两步为主,不超过三步,本单元教学的混合运算都只有两步计算。教材按算式中含有的运算,把运算顺序的教学分成三段进行:先教学算式中有乘法和加(减)法的,再教学算式中有除法和加(减)法的,最后教学算式中有小括号的。

1、结合现实素材,让学生体会运算顺序。

运算顺序是进行四则混合运算时应该遵循的规则。为什么在有乘(除)法和加(减)法的混合运算中要先算乘(除)法?为什么要先算小括号里的运算?教材让学生结合现实的素材体会这些运算顺序的合理性,这就是把运算顺序的教学和列综合算式解决实际问题的教学结合在一起的主要原因。

在教学运算顺序时,教材在三段内容里设计了不同的教学方法。

(1) 第30页例题的教学方法是先唤醒已有经验,再扩大外延,在同一类型的多种具体现象中抽取共同的特征,发现的规律就是教学的运算顺序。

例题先从买3本笔记本和1个书包一共用去多少钱这个实际问题列出综合算式53+20,这个算式是学生已经接触过的乘加,他们已经有先算乘法的经验,教材及时指导学生用递等式表示计算的步骤。然后,例题从买2盒水彩笔,付出50元,应找回多少元这个实际问题列出算式50-182,让学生结合这个实际问题要先算2盒水彩笔的钱理解这个算式要先算乘法。最后,教材在上面两个实际问题和两个综合算式里归纳算式中有乘法和加、减法,要先算乘法。

在这段内容里,运算顺序是教学的重点,教材结合解决实际问题有效地突出了运算顺序;用递等式表达计算步骤是教学的难点,教材在例题里画出蓝线引导学生把各步计算的结果写在它的上面,从而知道第一步计算的得数应该写在什么位置。

想想做做围绕按照运算顺序进行混合运算和写出计算步骤这两个主要内容而设计,第1、2题说一说每一题应先算什么以及改错练习,都能有效地帮助学生掌握运算顺序。第4题把乘加、乘减分别与加减混合、乘除混合设计成题组,学生边计算边比较,温故而知新。把乘加、加乘安排在一起的题组,再次鲜明地突出了运算顺序。

(2) 第32页的例题仍然按解决实际问题计算数学式子概括运算顺序的线索编写,但给学生的探索空间比前面的例题大得多。

教材采用和前面相似的教学线索,给学生留出运用已有的数学活动经验的空间,有利于学生通过自主探索获得数学知识。首先是教材提出买1枝钢笔和1个订书机一共要多少钱的问题后,让学生独立地列综合算式。他们可能列式8010+12,也可能列式12+8010。列出的两个算式虽然不完全相同,但都要先算1枝钢笔的价钱。其次是教材让学生独立地计算列出的综合算式,按照自己的计算步骤细致地算一遍,在计算和比较这两个算式中能看到相同的运算顺序。再次是让学生列综合算式解决1盒水彩笔比1枝钢笔贵多少元这个问题,体会在有除法也有减法时的运算顺序。这样,运算顺序就不再是机械告诉学生的,而是学生在学习活动中自己领悟的;运算顺序就不再是对学生的硬性规定,而是解决问题的需要。

学生已经初步有了用递等式表达运算顺序的经验,例题没有在综合算式中加蓝线指导第一步计算得到的商的书写位置。教学时要让学生看到,列出的两个综合算式虽然都是先算除法,但由于除法在综合算式中的位置不同,所以商应写的位置也不同。

(3) 第34页的例题凸现新的矛盾教学小括号,在了解小括号的作用的基础上,知道含有小括号的算式的运算顺序。

在列综合算式时出现了一个矛盾: 解决实际问题要先算买了1个书包后还剩下多少钱(即先算综合算式里的减法),而算式50-205应该先算除法(已有的运算顺序)。怎样解决这个矛盾?教材告诉学生: 这里要先算减法,综合算式里必须添上小括号。这句话既引出了小括号,又阐述了小括号的作用。因此,算式中有括号时,应该先算括号里的运算。

在想想做做里设计了多种形式的练习,第1题着重练习算式中有括号,应先算括号里的运算。第2题汇集了各种两步运算的题,有括号的和没有括号的,只有同级运算的和含有两级运算的,这些题综合在一起通过计算和比较,帮助学生全面掌握运算顺序。而且把6小题分成三组,同组两小题的差别只是有或没有小括号,通过计算和比较能使学生进一步体会加上或去掉小括号都改变了原来的运算顺序,最终改变了算式的结果。第7题通过对同一组的两道题的算一算和比一比,让学生发现减法的一个性质,为以后教学简便运算作铺垫。

2、在教学运算顺序的同时,教学列综合算式解决实际问题。

第一学段里的两步计算实际问题都是分步列式解答的,本单元教学列综合算式解答这些实际问题。在列分步算式解答两步计算的问题时,把这个问题分解成两个连续的简单问题,并分别列出两个简单问题的算式。列两步计算问题的综合算式,还要进一步在头脑中把两个简单问题和算式组织在一起,学生的思维在组织在一起的过程中得到发展,解决问题的能力在列综合算式的过程中得到提高。教材在教学综合算式时作了下面的安排。

(1) 初步体会。

第30页例题的第(1)小题,先让学生列分步式求3本笔记本和1个书包一共用去多少钱,然后告诉学生:把两个算式合在一起列成的是综合算式53+20。这是学生首次接触综合算式,他们观察教材列出的综合算式,能初步知道综合算式是分步算式合成的,初步体会到综合算式解答实际问题比列分步式要稍快一些。例题的第(2)小题指导学生联系已有的解决实际问题的经验,试着列综合算式。

教材让学生体会列综合算式的方法,可以先列出分步算式,再合并成综合算式,也可以直接列综合算式。不论采用哪种方法,都要依据解决问题的数量关系。第(1)小题是把3本笔记本的钱和1个书包的钱相加,第(2)小题是从50元里去掉2盒水彩笔的钱。想想做做里要解决的问题也是买两样东西应付多少钱或应找回多少钱,这些问题的数量关系学生比较熟悉,列综合算式不会有多大困难。

(2) 逐渐学会。

第32页的例题、试一试和想想做做里的实际问题与前面教学的内容相比,有两点不同。一是解决的问题不限于求总和与求剩余,还有求相差数(贵多少、便宜多少);二是要求不列分步算式,直接列综合算式。教材突出列综合算式时要依据问题的数量关系,引导学生逐渐养成先想解决问题的数量关系,再列综合算式的习惯。如例题里两个小卡通与学生的对话,讲的就是实际问题的数量关系,也是列综合算式时的依据。

(3) 学习思辨。

第34页例题的解题思路是先算出买书包后剩下的钱,再算剩下的钱还可以买多少本笔记本,解决问题的数量关系是剩下的钱除以笔记本的单价。在算式50-205里,有减法也有除法,应该先算205。为了先算这个算式里的减法,需要在算式里添上括号。这里就有对算式50-205进行思辨的活动,在算式里添上括号是思辨的结果。类似第35页第5题要先算会议室的面积是多少平方米,再算平均每平方米铺多少块地砖。对算式384128进行思辨,就知道应该为128加上括号。对列出的综合算式进行思辨,看算式的运算顺序是否和解决实际问题的步骤一致,能及时发现列式中的错误,保障问题正确解决。

第36页第10题要求学生用不同的方法解答应找回多少元这个问题。这道题让学生在现实的问题情境中,再次体会减法的性质。

本单元教学列综合算式解答两步计算的实际问题,主要目的是让学生体会运算顺序。教学本单元后,学生解答两步计算实际问题可以列综合算式,也可以列分步算式,不要作统一规定。

另外,教材里还有部分实际问题要求学生用不同的方法解答,主要目的是锻炼思维。一是培养学生思维的开放性,体会条件信息里的联系是多向的。如第38页第10题里,从5个乒乓球装一袋和每4袋装一盒可以知道一盒里有54=20(个)乒乓球;从5个乒乓球装一袋和一共有800个乒乓球可以知道一共装8005=160(袋)。二是培养学生思维的连贯性。当求得一盒装20个乒乓球后,就可以通过80020继续求一共装多少盒;当求得一共装160袋后,就可以通过1604继续求一共装多少盒。对用不同方法解答实际问题,在教学中要适当地控制,不要频繁地提出一题多解的要求,要允许部分有困难的学生逐步达到这个要求。

最新小学一年级数学人教版下册2021教案3

教学内容:求两个数的最大公约数

教学目标;

使学生理解求两个数的最大公约数的算理,学会求两个数的饿最大公约数的饿方法。

教学过程:

一、复习

1、什么叫公约数,最大公约数和互质数,举出一组互质数

2、写出36的约数,60的约数,36和60的公约数,36和60的最大公约数

二、教学新课

1、提出问题:求两个数的最大公约数。用上面的方法求两个数的最大公约数,很不方便,有没有更简便的方法呢,这就是我们今天要学的内容;

2、教学例3

我们可以这样想:把36和60分别分解质因数,把他们的最大公约数12也分解质因数,观察以下,他们有什么联系?

观察、比较、议论:

(1)36和60的公有约数是几,全部公有质因数的连乘的积是多少?

(2)36和60的公有质因数与他们最大公约数12的质因数相比,有什么发现?

(3)用短除法求最大公约数。

(4)引导学生观察,比较,议论。

3、巩固练习

4、试一试求下面两题的最大公约数。

5、教学例4

(1)求出下面各组数的最大公约数

(2)引导学生探求观察思考

观察上面三组数和他们各自的最大公约数,发现什?

6、教学例5

(1)求出下面各组数的最大公约数

(2)引导学生观察、探索、发现这些数的最大公约数

(3)教师学生共同

(4)练一练

(5)求下面各组数的最大公约数

三、布置作业

反思:我认为这几点我做的不好:

1、没有让学生真正懂得为什么两个数全部共有质因数连乘的积就是这两个数的最大公约数。所以在下面的练习中学生知识照搬照抄。缺乏灵活性。

2、对于有特点的两组数:互质数和约数关系时的教学缺乏举例,与学生的自我思考。

最新小学一年级数学人教版下册2021教案4

教学目标

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

教学重点

圆锥体体积计算公式的推导过程.

教学难点

正确理解圆锥体积计算公式.

教学步骤

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的.体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 1 2 3 4 5

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

(二)教学例1

1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

学生独立计算,集体订正.

板书:

答:这个零件的体积是76立方厘米.

2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

(三)教学例2

1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

思考:这道题已知什么?求什么?

要求小麦的重量,必须先求什么?

要求小麦的体积应怎么办?

这道题应先求什么?再求什么?最后求什么?

2、学生独立解答,集体订正.

最新小学一年级数学人教版下册2021教案5

教学目标:

1、结合具体情境初步认识分数,知道把一个物体或一个图形平均分成若干份,其中的一份可以用分数来表示,能用实际操作的结果表示相应的分数;能读、写简单的分数,知道分数各部分的名称。

2、学会运用直观的方法比较分子都是1的两个分数的大小。

3、体会分数来自生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

1、认识几分之一。

2、比较分子都是1的几个分数的大小。

教学难点:理解几分之一的含义。

教具、学具准备:多媒体课件,长方形纸、圆纸片、正方形纸、水彩笔。

教学过程:

一、创设情境、讨论揭题

1、故事引入:在一次愉快的队日活动中,老师让同学们两人一组分食品,小强和小丽拿到的是4个苹果、两瓶矿泉水和一个蛋糕。(课件演示)你愿意帮他俩分一分吗?怎样分比较公平呢?(平均分)板书:平均分。

师生交流:“把4个苹果平均分给2个人,每人分得几个?请拍手表示!”学生拍手表示,教师板书“2”(课件演示分的结果);“把2瓶矿泉水平均分给2个人,每人分得几瓶?”学生拍手表示,教师板书“1”(课件演示分的结果);“把1个蛋糕平均分给2个人,每人分得几个?”(学生无法拍手表示半个)“你会用一个数来表示这半个吗?”

A:(学生中没有用1/2表示)谈话:你们都用自己喜欢的方式表示了这个蛋糕的一半,说明你们都很有办法,不过,我要向大家介绍一种更简便而且科学的表示方法。当把一个蛋糕平均分成两份,要表示其中的一份时,可以用1/2来表示。(课件演示)

B:(学生中如果有用1/2表示)谈话:“1/2是什么意思?”(充分发挥学生的作用,认识、强化平均分)“你在那里见过二分之一?”

揭示课题:今天,我们就一起来认识数家族的新朋友——分数。

二、认识分数、操作深化

1、(课件演示):“把一个蛋糕平均分成2份,其中的一份就是这个蛋糕的二分之一。”(同桌之间相互说一说)

谈话:这一半蛋糕是这个蛋糕的1/2,那么,另一半蛋糕又是这个蛋糕的几分之几呢?(指名板书1/2)为什么也用1/2来表示?(学生表述)大家想的和他一样吗?(课件演示)

小结:把一个蛋糕平均分成2份,每份都是它的二分之一。

2、谈话:想知道分数各部分的名称吗?(课件演示,学生读)

3、谈话:“分数该怎样写呢?”(如果是B种情况,让学生讲,师补充;如果是A种情况,师讲解并示范)“写这个数的时候,先画一条横线表示平均分。”“这个蛋糕平均分成了几份?”(两份)“2就写在横线的下面,这半个蛋糕是其中的1份,就把1写在横线的上面,这就是分数1/2的写法。”“你们想试一试吗?”

学生自己在练习本上写1/2,同桌互相说说是怎样写的,检查一下谁写得更标准、更漂亮。

4、谈话:我们已经会读、会写1/2了,想不想动手做一个1/2呢?

活动要求:拿出老师发的长方形纸,先折一折,再把它的1/2涂上颜色,然后在小组里说一说,你是怎样表示这张纸的1/2的?

全班交流:你是怎样表示这张纸的1/2的?(把一张纸平均分成2份,涂上其中的一份,就是1/2)把学生的作品贴在1/2下面。

“还有谁与他的折法不一样的?”

提问:他是这样把这张纸平均分成2份的,涂上其中的一份表示1/2,可以吗?还有不一样的吗?(选择不同表示形式的作品也贴在1/2下面)

5、练习,完成“想想做做”第1、2题。

谈话:认识了1/2,你还想认识其它的分数吗?

(1)(课件出示第1题)学生读题目。

指导完成第1幅图。“这幅图是把这个圆平均分成了几份?这其中的一份怎样表示?请在括号里表示出来。”“你是怎样写的?为什么用1/3来表示?”

其余几幅学生独立填写,完成后集体反馈。“怎样表示?为什么?”

(2)(课件出示第2题)学生读题目。

交流:你选第几幅图?为什么?其他三幅图有什么问题?

强调:只有把一个图形或者一个物体平均分成几份,每份才是它的几分之一。

三、自主探索、比较大小

1、教师板书:1/2、1/4、1/8,让学生读出各数。

谈话:“看到这三个分数,你能说出它们谁大谁小吗?”(学生猜测,交流)“究竟谁说的有道理呢?需要大家动手来验证一下,请从老师为你们提供的学具里选择合适的学具,折一折,比一比,然后在小组里交流你的发现。”

组织学生汇报、交流,教师小结。

2、练习,完成“想想做做”第3、5题。

(1)、(课件出示第3题)谈话:三张纸条的长度怎样?(一样长)

第一张纸条全部涂色,该怎样表示?

第二张、第三张纸条的涂色部分会表示吗?(生答,师演示)

你能根据三张纸条涂色部分的大小,比较出这三个数的大小吗?

(2)、(课件出示第5题)指名读题目,并说出题目的要求。

学生独力完成,集体反馈。

四、延伸拓展、总结评价

1、(课件出示)“想想做做”第6题图。

谈话:这次的黑板报有哪些板块?《科学天地》大约占黑板报版面的几分之几?《艺术园地》大约占黑板报版面的几分之几?哪一部分大一些?

谈话:这就是我们生活中的分数,我们的生活中不光有整数,也有分数。

2、总结:这节课你有哪些新的收获?今天学习的分数有什么相同的地方?你觉得还要学习什么样的分数?让我们课下找一找生活中还有哪些分数,好吗?

【课后反思:】

这节课作为区课改实验观摩课,经过多次修改拿出来后,获得了听课老师的一致好评。作为本节课的实践者,我感觉有两方面做的比较成功:

1、情景创设有利于激发学生的问题意识,以积极的情感投入到对新知的探索中。在设计本节课时曾设想,怎样才能让新课的引入成为学生自身的需要呢?经多次“磨课”后,选择了让学生拍手表示物体平均分后的数量。这样一来,表示“半个”就不可能再用一个手指来表示,而需要想其它的办法。课堂上学生的出色表现是令人惊叹的,他们在短暂的思考后,有的是把一根手指弯着出示,有的用另一只手挡住或握住另一只手的半根手指,还有的干脆说:没法表示,就写两个字——半个。这时老师提出:“你能用一个数来表示半个吗?”学生在老师的引导下提出可以用0.5表示,也有学生提出用分数表示,还有的说用二分之一来表示,老师都给他们提供表现的机会,让他们在黑板上用数表示出来。然后老师有选择的告诉学生:“0.5可以表示半个,这是小数,以后会学到,而像这个数(指二分之一)叫做分数,也可以表示半个,今天这节课我们就一起来认识它。”结合课件老师向学生介绍了分数产生和发展的过程,极大的激发了学生探究数学,学好数学的热情。

2、在教学中注重数学思想和方法的渗透,使学生会“做数学”。在进行“比较几分之一的大小”这一环节时,先让学生根据自己的感受猜想1/2、1/4和1/8哪个大,哪个小,然后为他们提供试验材料,鼓励他们来验证自己的猜想。学生在折、涂、比和交流中明确了对于同一个物体(或同样大小的几个物体),平均分的份数越多,表示每一份的数就越小,所以1/2﹥1/4﹥1/8。这样一来,学生对分数的意义以及大小的比较的理解会更深刻,对探究数学的兴趣会更大更浓。

由此使我想到:只有把学生放在第一位,以发展的眼光来看代学生设计教学,才会真正落实课标提出的“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”