二次函数北师大版数学初三上册教案

阿林

《二次函数》教案

点拨精讲:判断二次函数关系要紧扣定义.

一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)

探究1 若y=(b-2)x2+4是二次函数,则__b≠2__.

探究2 某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.

(1)求y与x之间的函数关系式;

(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?

《 二次函数 》单元测试

1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的 表达式;

(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;

(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.

《二次函数》基础练习

1.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=________元,一天出售该种手工艺品的总利润y最大.

2.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面4 m的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m,则校门的高度为(精确到0.1 m,水泥建筑物厚度忽略不计)________.

3.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线y=-35x2+3x+1的一部分,如图J22-3-2.

(1)求演员弹跳离地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.