高数学习心得范文10篇

王明刚

高等数学课程,如果仅仅是作为一种数学工具的功能的话是正在逐步缩减,但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。这里给大家分享一下关于高数学习心得,方便大家学习。

高数学习心得1

高等数学是我院财务管理、工程管理、国际贸易、商管等相关专业的基础课,主要讲述了一元函数与多元函数的微积分学,针对不同专业的实际情况,结合“双考大纲”,高等数学又分为《高等数学A》、《高等数学B》、《高等数学C》,充分掌握高等数学的基本知识,对今后专业课的学习,继续深造,从事金融行业、建筑行业以及个人的逻辑思维等方面有很多大帮助。但是这门课程具有高度的抽象性、严密的逻辑性和广泛的应用性,知识一环扣一环,结构既有严密的内在联系同时又呈曲线跳跃式发展,对于各高校的学生来说,都是一门难学的课程。因此,在教学过程当中,尽可能的采取灵活多样的教学方法,让学生充分的理解、掌握所学知识。作为一名新入职的教师,一方面很是感激校方对于我的信任,另一方面也深知作为年轻老师教学经验还有待进一步提高,但是我在西北大学现代学院这仅仅半年时间就让我受益匪浅,在这里谈一下自己的感受:

首先要认真备课,仔细撰写教案,上课时要说课,这节课大家需要掌握什么(教学大纲的要求,考试要考的知识),重点、难点是什么,使学生清楚这节课堂目的,做到有的放矢,同时还要时而去走进其他老师的课堂,认真听听他们的讲课,向有经验的教师学习,反思自己的教学过程并不断完善自己的教案和教学方法。对于教案的认真撰写须不断地向其他优秀老师学习,这样才会不断地完善自己的教学,提高自己的能力。

其次,上课要突出重点,做到张弛有度,结合我院学生的特点,尽量用简单通俗的语言,图形描述讲解抽象的定理,推论等,比如在讲解定积分及其性质、多元函数求导运算。具体到知识点的时候,重点是在分析,考察哪个知识点,要我们做什么,完成这个工作,需要几个步骤,每个步骤的工作又是什么,跟学生讲明白,体现层次感,每堂课对于一个知识点,至少一道题目要有完整的板书,便于学生做笔记,模仿,要及时讲解作业,多与学生交流,了解学生,深入到学生中去。

再次,教会学生学习的方发:听课要学会“抓大放小”,抓住主要思路,主要思想,主要的脉路,不要在小问题上纠缠,课后自己动手去解决,实在不懂再问老师、同学,因为高数的技巧性很强,这样也提高了学生学习的兴趣。另外,上课的内容要有所拓展,在难度上要照顾想考研的学生,这些跟学生说清楚。

最后,就是基本素质,所谓“学高为师,身正为范”,教师的言行举止也在潜移默化中影响着学生。因此,我们要着装大方得体、讲课的语速要适中,提前几分钟到教室,上课带教案、教材、教学手册,尊重学生,所言所行符合高校教师职业道德。

高等数学这门课程本质上决定了它的枯燥无味,在教学过程中,要不断摸索,总结,依靠课堂魅力去感染学生,影响学生,让学生喜欢这门课程。

高数学习心得2

在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。

大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。

在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。

经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。

在选课的时候,我发现还能选修高数,这次,我不想再错过。我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。”是的,我选择重新认识高数,我要为自己过去的罪行赎罪。

再次接触高数,捧着2年前让我头疼的课本,我发现其实真的可以懂,老师讲的比较简单,思路也很清晰。重新认识了牛顿莱布尼兹的微积分,惊叹他们天才般的才智,运用无限的模糊理论,可以解决许多医学上的问题,我才觉得高数真的是充满了魅力和魔力,它能让我们把简单的问题先给复杂化最后再简单化,培养我们的思维,更智慧巧妙地解决生活中的问题。学好了高数,就像给你增添了一双隐形的翅膀,你拥有了更开阔缜密的思维,许多问题突然变得迎刃而解了。

当然,学好高数并非那么简单,但探索其中的奥秘确实非常有价值,我想,如果能把自己学到的高数知识运用到自己的生活,学习,工作上,才算是真正学好了高数,感谢高数,这次不仅仅因为它是高“树”,而是我明白,攀登上这棵高树,我看见了前所未有的迷人风景。

高数学习心得3

高等数学是理工科甚至文科生在本科学习的工具和基石,日后学习的各种学科各种理论的推导基础和方法。

而且因为刚上大学掉以轻心、不适应大学学习等原因,高数还是拉开自己与同学成绩差距的一门学科。

高等数学如此重要,那么如何学好高等数学,我分享一下我的学习经验。预习、学习、复习三部曲依旧不变的,高中怎么学习,大学也是差不多的,而大学变的是学习的深度和广度。这些都是由自己确定,想学得好,全靠自己,多记,多练少不了的。如果想成绩好,最好还是考前看看往年试卷,今年的考纲等等。但如果只看往年试卷,今年考纲,及格应该没问题,可是高分就很难。高考试卷学神们做过多少次了,也没有人高考满分的,而且我们不能保证今年试卷就和往年一样,还不超纲,所以聪明点,用体系去对抗考试,考试不是学习目的,我们是要学好,顺便考好试!

高数学习心得4

高等数学是大学工科课程里的一门重要基础课。它的重要性,我相信大家都了解。高等数学是许多课程的基础,特别是与以后的许多专业课都紧密相连。因此,学好高等数学对于一名工科学生来说,至关重要。

然而,对于许多同学来说,高等数学是一门头疼的学科。如何学好高等数学呢?下面是我个人在学习过程中的一些心得体会。

首先,我觉得高等数学与以前我们高中所学的数学有一点不同。高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。强调的数学的逻辑性与分析性。不像高中数学那样注重技巧性。因此,在学习的过程中,课本的知识至关重要。对于课本上面每一个概念、定理、公式、例题,都要理解清楚。特别是对于定理、公式的推导过程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。因为学会自己推导,更有助于我们的记忆和应用。我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。

第二,学习数学是不能缺少训练的。一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些?应用了哪些公式定理?错在哪里?为什么会做错?学会思考,学会总结,这样做题才能达到事半功倍的效果。

最后,学好数学是一个坚持的过程。高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。这样,对于后面的学习会造成很大的影响。

高数学习心得5

光阴似箭,日月如梭,一转眼,本学期便悄然结束了。回首这一学期的学习情况,给我记忆最深的莫过于上二位刘老师的《高等数学》这门课程了,课程即将结束,但二位老师严谨认真负责和富有人性化的教学,仍然在我的脑海中不时的浮现。

《高等数学》是数学科学的一个重要分支。学好这门学科,不仅使人能了解相关的基础知识和重要内容,从而增强自己解决问题的实际能力,更重要的是它有助于改进我们观察问题、思考问题和处理问题的能力,从而使我们的逻辑思维和思辨能力进一步大大提高,这些,无疑对工科研究生还是文科研究生来说,都是至关重要的,所以自上刘老师的第一节课,我就意识到这门课程的重要性,每次都认真聆听老师的上课,遇到问题及时请教。

二位老师虽然较年轻,但由于她们素质较高,数学功底较深,加之她们富有同情和体贴的教学,故在本学期的这门课程上,学到了许多原来不知道的知识和许多相关的高等数学理论,使我终生难忘,终生受益。例如,我原来根本不知道什么是导数与微分,更不用说它们在实际生活中的具体应用了。但通过学习过高等数学之后,我不但知道了它们的概念,而且还懂得在日常生活中的具体运用。例如:飞机平稳降落、天气乍寒乍冷、股市迅猛上扬、产值增幅下降、山路越来越陡,这些形容变化的大体情况,我们竟然可以利用高等数学的导数概念来准确刻画这些变量在某一瞬间变化的快慢,也就是确定其变化率,这些都是我原先根本不知道的相关内容。当然,跟二位老师学到的知识,又何止这一点呢,这里我就不在一一列举了。

跟老师学习知识固然重要,但更重要的是要学会老师的为人和待人处事的品质及其风格,然而二位老师在这方面恰恰是我们的楷模和效仿的典范。由于我们是文科学生出身,原来在数学学习方面,就没有经过很好的训练,就更不用谈学高等数学了,尤其像我这位年龄较大、思维定势受限而且较愚钝的人,学习起来肯定不如年轻人,但二位老师在学习方面从不歧视我,对我所问的每一个问题,不论简单还是复杂,她们都乐意地回答,使我最大程度上的满意。另外,二位老师,在教学期间,从不缺课,上课时,除了认真教课,没有别的任何私心杂念,也从不计较个人得失,默默无闻地耕耘着,春蚕到死丝方尽,蜡炬成灰泪始干,这正是二位老师的深刻写照。

学生回报师恩的最好方式是把学问做好。“为天地立心,为生民立命”超出了我的能力,但“为吾师继其学”是我能够做到的。我将在以后的工作和学习生活当中,把高等数学和其他相关知识学好,已回报我们敬爱的老师…

高数学习心得6

随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。

以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因.学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。

1)从正反两个层面理解概念

我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止.只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的.还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。

2)学与问

古人说.学起于思,思源于疑,这话道出了做学问的过程中发现问题提出问题的重要性。高等数学的讲课进程一般都比较快的,课堂上讲的内容不能完全听懂是正常的现象,同题在于听不懂看不懂的内容是随意放弃呢还是努力请教老师请教同学直到学懂为止。如果轻易放弃.时间一长就会失去学习的信心,所以一定要以锲而不舍的精神边学边问。不过这样的提问还只是被动的,主动的提问应该是自己在学习过程中去发现同题。如何才能

发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。

3)做习题与想习题

学习数学,不做习题是绝对不行的.因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果.经过又一次正反两个层面的开掘.思考深入了,学习的兴趣也会逐步培育起来。

高数学习心得7

数学是一门让很多同学都头疼的学科,到了大学除了法学等个别社会科学专业的学生,都摆脱不了对它的学习,但因为它的相对复杂性,使得数学成了一门挂科率很高的学科,正像大学校园里经常调侃的:“大学里面都有一颗树,叫做“高数”,很多人都挂在上面。”很多同学不爱学习数学,认为自己学不好,但是数学对我们的日常生活很重要,涉及面也十分广泛,我感觉只要掌握好数学的学习方法,学起来应该还是比较容易的,下面给大家分享一下高数的学习方法。

每个人的学习习惯和理解问题的能力也有所不同,但一般的方法还是有规律的,想要学好数学必不可少的有以下几个环节。

一、培养兴趣。

大家都知道,想要把一件事做好首先要对其有兴趣,学习也是一样。很多同学看见数学复杂多变的符号和公式,头就变大了。一开始便对其产生了厌恶,不爱学习导致成绩下滑,成绩不好就对其更加厌烦,久而久之成了一个循环的怪圈。所以想学好数学,首当其冲的是培养对它的兴趣,把学数学当成一种快乐的事,同学们可以试着从简单的题目开始学习,每解出一道问题心里就会有种成就感,大大提高对数学的兴趣,然后在逐步向难度大的题目过度,使学数学成为一种习惯。

二、课前预习。

这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。

三、认真听讲,记好笔记。

对于上课要用心听讲大家都明白,但要记好课堂笔记的重要性有的同学就不以为然了,认为教材上都有,大可不必去记。其实这种认识是错误的.,也是中学里带来的一种不良的学习习惯。老师对于高等数学课程的讲授,绝对不是教材上的内容的简单重复,而是翻阅了大量的同类参考书,而结合自己的教学经验与体会,所以毫不夸张地说,教师的授课教案既有以往成功的经验体会,同时也有过去的教训的借鉴。因此,同学在听课的同时必须记好课堂笔记,同时这种好的学习习惯即勤动笔对于自己学习及工作能力的培养也是大有好处的。

四、跟随老师,积极互动。

上面说了上课要认真听讲记好笔记,与此同时上课积极发言、踊跃的与老师做好互动也非常重要。上课积极回答老师提出的问题,老师的讲课状态就会越好,从而可以多讲一些有用的知识。这样课堂气氛也活跃了,有了更好的学习氛围,老师通过学生的反应与互动,更清楚的了解学生接受的程度,以调整自己的讲课方式和速度等,以便同学们更好的理解。学习是一个互动的过程,所以师生间的交流必不可少。

五、课后复习,整理笔记,多做题。

课后的自习,不少人是赶快做作业,这也是一种不好的习惯,其实下课后应该进一步认真钻研教材或教学参考书,在完全弄懂本次课内容之后,整理充实课堂笔记,有些需要理解的地方添上自己的心得与体会,把书本上的知识真正变成自己掌握的知识,然后再完成作业,这要比下课就赶作业的效果要好得多,而且完成作业的速度也要快得多。理科类的东西重要的还是多加练习,多做习题,才能更好地运用和理解公式,培养出良好的解题思路和逻辑思维。

六、善于归纳。

人的记忆力是有限的,要全面记住所有有用的东西而不遗忘是很难办到的,怎么办呢?这就需要对自己学的知识加以归纳总结,找出它们之间的内在联系和共同本质的东西,然后使之系统化条理化,从而记住最有代表性的知识点,而其余部分只要在此基础上经过推理便可以了解。每学完一章,自己要作总结。总结包括一章中的基本概念,核心内容;本章解决了什么问题,是怎样解决的;依靠哪些重要理论和结论,解决问题的思路是什么?理出条理,归纳出要点与核心内容以及自己对问题的理解和体会。最后是全课程的总结。在考试前要作总结,这个总结将全书内容加以整理概括,分析所学的内容,掌握各章之间的联系。这个总结很重要,是对全课程核心内容、重要理论与方法的综合整理。在总结的基础上,自己对全书内容要有更深一层的了解,要对一些稍有难度的题加以分析解决以检验自己对全部内容的掌握。

总之,大学的学习是人生中最后一个系统的学习过程,它不仅要传授给我们一个比较完整的专业知识,还要培养学生即将走向社会的工作能力和社会知识。就高等数学课程而言,是培养我们学生的观察判断能力、逻辑思维能力、自学能力以及动手解题的能力,而这几种能力结合起来,就可以构成独立分析问题的能力和解决问题的能力。在此,期望大家高度重视高等数学的学习,找到适合自己的学习方法,相信大家会获得更大的收获。

高数学习心得8

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近2019年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢?

在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。

所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。

高数学习心得9

1、我认为应该讲实数的完备性的六大定理及其证明,在证明这六大定理彼此等价的过程中,肯定对同学们也是数学素质的培养。可能你们认为同学们接受不了,所以应该放弃。我不认为交大的学生会这么差,你们的第18题都有人做得出来,充分说明他们潜质无限,你们还有什么好担心的?而且,没有这六大定理,你怎么证明连续函数的性质?别告诉我连续函数的性质不重要,因为这是常识,是最基础的东西。当然,的确有人无论如何也学不会,但数学本身就不是任何人都可以玩的游戏,就像篮球一样,不是每个人都有姚明的天赋。

2、函数项级数的绝对收敛有一个重要的结论,就是可以任意交换项的顺序而不改变收敛性和收敛值。这个结论的证明并不复杂,也没用到经典的极限理论。思想方法也很值得借鉴。但我不明白我们的课本里却没有。当你告诉同学们一个结论的时候,你却不能提供证据,这样,时间长了同学们带着困惑去听课,会越听越糊涂,云山雾罩,最终失去了对数学的热爱。讲课者也无法向学生展示数学的美。

2、上极限的概念我认为也应该讲,但没必要像数学专业讲得这么深奥。我对高数的学生讲这个概念只是一句话:上极限就是最大的子极限。再举一些例子就完了。不然的话,当极限不存在的时候,你如何求幂级数的收敛半径?

3、一致收敛的概念也应该讲,因为逐项求导、逐项积分也是工科学生常常使用的东西,没有一致收敛,你怎么可以堂而皇之地逐项求导、逐项积分?很多幂级数你不逐项求导、逐项积分你根本就求不出来。当然我讲这个概念也讲得很辛苦,讲完一致收敛及其他的性质,以及举出各种反例整整用了两个星期的时间(八学时),但是,一旦有了这个概念,学到幂级数的时候就感到非常轻松,一切都显得自然而然。因为幂级数的特殊性,你很容易就可以证明其是否一致收敛,再加上利用上极限的概念你很容易就可以证明逐项求导、逐项积分之后的幂级数收敛半径不变,很简单你就可以逐项积分、逐项求导。我真不知道没有一致收敛和上极限的概念,你怎么用很简洁的方法证明这个结论?而没有这个结论,你又如何保障逐项积分、逐项求导之后依旧收敛并且收敛到原来的函数的积分或者导数?而如果不加证明地丢给同学们很多不明就里的结论,要求他们强行记忆,然后拼命地做各种题目训练出做题的技能,这真的就是我们培养人才的目的吗?数学素质的教育和深度思考的习惯对其他专业理工科的学生真的就不重要吗?

至于时间不够的问题我认为根本就不存在。我的处理方式就是,仔细讲述涉及到的数学的概念和定理证明,至于计算题我就只讲一讲方法,他们回去做作业完全可以看着例题照着葫芦画瓢。

我们原来使用的微积分课本题目难度很大,可以说达到了一定的境界,但理论部分实在是难以恭维。这样的培养目标究竟是什么我真的不好讲,似乎是准备参加数学竞赛。但对数学素质的培养并没什么太大帮助,也没有培养出同学们学会思考问题的习惯,自学能力也得不到提升,对后续课程的学习也很不利。因为不知道为什么,学了也很容易忘掉。

总之,我建议大规模修改课本,增加系统的理论。非数学系的教学摆在我们面前的就是如何通俗地讲解数学理论,而不是放弃数学理论。原来这个课本千万不要再用了,简直就是误人子弟。

高数学习心得10

高等数学是工科、经管类等专业核心课程之一,是后续专业基础课和专业课学习的重要工具,也是对学生的思维能力、思维方法及创新能力培养的重要手段,因此学好高等数学是很重要的。但随着高等教育的大众化,学历教育的层次和办学模式的多样化,作为基础课的数学,教学班一般多为大班授课,加之学生基础往往参差不齐,学习方法差异较大,这就给数学课的教学增加了难度。下面就这些年自己的教学实践,谈谈怎样搞好高等学校数学课的课堂教学。

一、重视绪论课,激发学生对高等数学的学习热情:

开篇第一课要首先简单介绍微积分的发展历史,从欧多克斯、阿基米德、牛顿、莱布尼兹等数学家对发现微积分的贡献,谈到认知世界的一般规律,即感性到理性、从定性到定量、从常量到变量,结合我国庄子的《天下篇》、刘徽的“割圆求周”到赵州桥的建造,都深刻地揭示了微积分中的“以直代曲”“不变代变”的辩证思想。同时介绍本课程的研究对象、研究内容和研究工具,将主要内容用一条线穿起来给学生一个整体印象。明确告诉学生微积分对自然科学的发展起了决定性的作用。?

二、通过教学使学生逐步树立学好高等数学的信心

近几年来我主要从事自考院高等数学的教学工作,针对学生的数学基础比较薄弱,过关率不高,有很多学生一开始就对学好高等数学没有信心等情况。我决定,必须因材施教,在课堂上应尽可能的用通俗易懂的语言来描述数学概念,让学生逐步明白学习高等数学不是简单地从“高三”到“高四”,更主要是思维方式的转变。使学生明白基础不好未必就学不好高等数学,只要方法得当是可以学好高等数学的。

三、注重教学效果

加强对学生的了解与交流,建立良好的师生关系,有助于将单纯的教育教学过程变成师生平等对话、合力互动、教学相长的友好合作的过程。心理学认为:满足人们对理解、尊重和追求的需要,就能激发人的潜能,使人有一股内在的动力,朝所期望的目标前进。因此教师要树立以学生为主体的生本教育观念,要尊重学生、赏识学生、鼓励学生、相信学生,达到激发学生学习兴趣的目的。另外,教师要注意调控好个人的情绪,不能随意把自己的喜怒哀乐带进教室。良好的教学情绪,积极的教学情感,能唤醒学生愉快的情绪体验,使之精力充沛,兴趣盎然。

好的提问方式常常能激起学生的求知欲和探索欲,引发辩论,引导学生全身心地投入到深层次的思维活动中,从而增强学生的学习兴趣。为此,可以通过以下两个途径:

1、重视预习。预习是学习过程中很重要的一个环节,一方面让学生带着问题来听课,以提高听课的效率。更重要的是逐步培养学生的自学能力。在我看来,大学教育的主要的目的之一就是培养学生的自学能力。教师在每次授课结束时明确提出下次授课的具体内容和预习要求,让学生对将要学习的内容有问可提,才真正达到预习的目的。

2、引导学生分析归纳所提的问题,并学会做出恰当的评价。以鼓励为主,学生提的问题越是多样就表明他们预习效果越好,然后鼓励他们把这些问题分类,教师因势利导地再提出新的问题,并在讲解过程中逐步使学生理解所提问题的价值,分析问题之间的关系,了解其中的含义。

四、重视数学概念和定理的讲述

在讲叙数学概念和定理时,不仅要向学生传授这些知识,还要向他们传授这种抽象、概括问题的思维方法,让学生学会从具体内容中抽象概括,找出事物的本质。例如,在建立定积分概念时,通过对两个具体问题一一曲边梯形的面积和变速直线运动的路程的计算,可以看到:前者是几何量,后者是物理量,实际意义并不相同,但它们的数学思想和计算方法是相同的。排除其具体内容,抽出其本质特征,即单从数量关系看,都具有一种相同结构的特定形式,从而抽象概括出定积分的普遍性定义。

分析与综合是数学学习中最常用的方法。分析是从未知“看”需知,“逐步靠拢到”已知的过程;而综合则是从已知“看”可知,“逐步推到”未知的过程。两者对立统一,它们相互依存、相互转化。所以在讲解一些证明或者比较复杂的问题时,两者一定要结合着用,先用分析法来探求解题的途径,再用综合法加以叙述。比如在证明一些中值定理的命题时,我们常用的“构造辅助函数法”,就是利用这种思路去找辅助函数证明结论的。?

其次要注重培养学生的发散性思维。发散性思维是一种不依常规、寻求变易、从多方面思索答案的思维方式。在这种思维方式的驱动下,学生思想活跃、勇于探索、善于发现.对学生发散性思维的培养应体现在:(1)在问题求解前要尽可能提出许多设想,多种解法,充分调动学生的积极性,启发他们从多方面去探求原因,抓住问题的关键,找出其最好的解答方法。(2)在求解问题的过程中重点要放在对题目的分析过程上,把教师精讲和学生的多练结合起来,选择有代表性的范例,从多方面分析题目的解题思路和解答方法,尽量做到一题多解、一题多变、一题多问,以加深学生对所学知识的理解,激发学生的发散性思维。?

五、 要重视习题课?

习题课是高等数学教学的一个重要环节,是对所学知识的复习、巩固、运用和深化。通过上习题课可逐步培养学生的运算能力、抽象概括能力和综合运用所学知识分析问题、解决问题的能力。如何才能上好习题课呢,我以为应注重下面几点。?

1、首先应注重培养学生的逻辑思维能力。逻辑思维能力包括抽象与概括的能力、分析与综合的能力和归纳与演绎的能力。习题课上教师通过具体的例题对高等数学中的概念、定理和法则进行梳理,使学生加深对各个知识点的联系。

2、此外,在习题课上,对所学的基本定理、基本概念要重点强调它们的条件、应用范围及其相互关系,使其在学生思维中形成一个完整有机的知识体系,为培养学生的创造性思维创造有利条件。新旧知识要联系着讲,不仅仅要讲这一单元的知识,也要注重对以前单元知识的复习。随着时间的推移,有些知识可能会遗忘,若在讲题的过程中,把以前单元的知识也捎带着复习一下,不仅可以增加学生的记忆效果,还会加深学生对本单元知识的理解,起到温故而知新的作用。?   总之,数学学科自身的特点决定了要学好它就必须对它产生兴趣。为此,需要教师在教学过程的各个环节中,根据学生的具体情况和心理特点,因材施教,采用多样化的教学方法和技巧,有计划、有目的地培养和激发学生的学习兴趣,最终达到较好的教学效果。