八年级数学《多边形1》评课稿

孙小飞

八年级数学《多边形1》评课稿

  今天听了蔡老师的一堂课给我带来了深刻的印象,下面我就蔡老师的《5.1多边形(1)》谈谈自己听课的几点感受:

  在整个教学过程中,蔡老师注重学生问题意识的挖掘,做到以生为本,师生关系融洽,整个课堂非常活跃。

  一、提供有价值的情境引入,激活学生数学问题意识

  我们知道,学生的数学的学习过程就是问题解决的过程。数学问题解决在一定的问题情境引入中开始,这就要求教师提供有价值的材料,创造一种激发学生数学问题意识的情境,以引起学生内部的认知矛盾冲突,激发起学生积极、主动的思维活动,再经过教师启发和帮助,通过学生主动地分析、探索并提出解决问题方法、检验这种方法等思维活动,从而达到掌握知识、发展能力的教学目标。首先,蔡老师让学生类比三角形定义、概念、表示法等得出四边形的定义以及边、角的概念、表示法等,遵循学生数学学习的认知规律,让学生在熟悉的情境中挖掘出未知的数学学习内容,让学生经历几何图形学习的方法,找出问题解决的共同点,以此让学生在以后多边形概念学习找到模型。

  二、挖掘有“生命力”的数学问题,提升学生数学问题意识

  在课堂教学中,挖掘数学教学的核心知识,让我们教师创设的问题有探讨的空间以及延伸的方向,这样才会使学生的数学问题意识的得到提升,对数学课堂教学的实效起到事半功倍的良好效果。本课教学中,蔡老师让学生类比三角形内角和1800猜想得出四边形内角和3600,再让学生探究四边形内角和定理,让不同的学生尝试用不同的.证明方法进行问题解决,这样做符合我们几何教学的一般过程:从猜想到证明。同时,蔡老师还对四边形内角和定理的应用进行了适度挖掘。

  从以上教学过程中,我们可以看到蔡老师拥有熟练现代化教学技术应用能力,非常直观地把我们所需要的教学情境创设出来了。青年教师的对教材的挖掘、对课堂的掌控非常好,但在听课过程中,本人有一点不成熟的做法想与大家商榷:

  对四边形内角和定理的证明内涵挖掘能否再次深入。蔡老师和学生都在课堂中展示了四边形内角和3600的三种常见证明方法,本人认为能否在此处停留教学脚步,放开手脚让学生再多几种证明方法,最主要的是提炼这些证明方法的统一性,可以让学生对各种证明方法进行分类、归纳、提升,比如把3600进行各种分解,这样课堂教学的内涵是不是更加精彩一些。如果时间不够,也可以延伸到课后让学生来比拼和交流,这样数学的学习味道更加强烈一点。以上是本人对蔡老师课的一点不成熟想法,欢迎大家批评指正。