云南省中考数学考点总结

马振华

云南省中考数学考点总结

整式

1.单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

2.单项式的系数:是指单项式中的数字因数;

3.单项数的次数:是指单项式中所有字母的指数的和.

4.多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

5.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6.单项式和多项式统称为整式。

2.2整式的加减

1.同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2.同类项必须同时满足两个条件:

(1)所含字母相同;

(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关。

3.合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5.去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6.整式加减的一般步骤:一去、二找、三合

(1)如果遇到括号按去括号法则先去括号

(2)结合同类项

(3)合并同类项

中考数学考点总结

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

中考数学考点

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1