东营中考数学考点总结

阿林

东营中考数学考点总结

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

2.切线的性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:

内角的一半: (右图)

(解Rt△OAM可求出相关元素, 、 等)

六、 一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

七、 点的轨迹

六条基本轨迹

八、 有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、 基本图形

十、 重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

中考数学考点总结

一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .

2. 特殊角的三角函数值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余两角的三角函数关系:sin(90°-α)=cosα;…

4. 三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:

②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

中考数学考点

一、 重要概念

1.数的分类及概念

数系表:

说明:“分类”的原则:1)相称(不重、不漏)

2)有标准

2.非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法

②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。

4.相反数: ①定义及表示法

②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算

1. 运算法则(加、减、乘、除、乘方、开方)

2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”

到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

三、 应用举例(略)

附:典型例题

1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。