四川省绵阳市中考数学考点

李盛

四川省绵阳市中考数学考点

一、等腰三角形

1、定义:有两边相等的三角形是等腰三角形。

2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)

3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)

4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴

3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

特殊的等腰三角形

等边三角形

1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。

(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。

2、性质:⑴等边三角形的内角都相等,且均为60度。

⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。

⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。

3、判定:⑴三边相等的三角形是等边三角形。

⑵三个内角都相等的三角形是等边三角形。

⑶有一个角是60度的等腰三角形是等边三角形。

⑷有两个角等于60度的三角形是等边三角形。

二、直角三角形全等

1、直角三角形全等的判定有5种:

(1)、两角及其夹边对应相等的两个三角形全等;(ASA)

(2)、两边及其夹角对应相等的两个三角形全等;(SAS)

(3)、三边对应相等的两个三角形全等;(SSS)

(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)

(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)

2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半

3、在直角三角形中,斜边上的中线等于斜边的一半

4垂直平分线:垂直于一条线段并且平分这条线段的直线。

性质:线段垂直平分线上的点到这一条线段两个端点距离相等。

判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。

6、角平分线上的点到角两边的距离相等。

7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。

8、角平分线是到角的两边距离相等的所有点的集合。

9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。

10、三角形三条中线交于一点,交点为三角形的重心。

11、三角形三条高线交于一点,交点为三角形的垂心。

三、平行四边的定义

1、定义:两线对边分别平行的四边形叫做平行四边形,

2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。

3、判定:(1)一组对边平行且相等的四边形是平行四边形。

(2)两条对角线互相平分的四边形是平行四边形。

(3)两组对边分别相等的四边形是平行四边形。

(4)两组对角分别相等的四边形是平行四边形。

(5)一组对边平行,一组对角相等的四边形是平行四边形。

(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。

两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。

(2)一组对边相等,一组对角相等的四边形是平行四边形。

四、矩形

1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。

(4)矩形是轴对称图形,有两条对称轴。

3、判定:(1)有三个角是直角的四边形是矩形。

(2)对角线相等的平行四边形是矩形。

五、菱形

1、定义:一组邻边相等的平行四边形叫做菱形。

2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4)菱形是轴对称图形,每条对角线所在的直线都是对称轴。

3、判定:(1)四条边都相等的四边形是菱形。

(2)对角线互相垂直的平行四边形是菱形。

(3)一条对角线平分一组对角的平行四边形是菱形。

六、正方形

1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2、性质:正方形具有平行四边形、矩形、菱形的一切性质。

3、判定:(1)有一个内角是直角的菱形是正方形;

(2)有一组邻边相等的矩形是正方形;

(3)对角线相等的菱形是正方形;

(4)对角线互相垂直的矩形是正方形。

七、梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形

八、等腰梯形

1、定义:两条腰相等的梯形叫做等腰梯形。

2、性质:等腰梯形同一底上的两个内角相等,对角线相等。

3、同一底上的两个内角相等的梯形是等腰梯形。

九、三角形的中位线

定义:连接三角形两边中点的线段。

性质:平行于第三边,并且等于第三边的一半。

十、梯形的中位线

定义:连接梯形两腰中点的线段。

性质:平行于两底,并且等于两底和的一半。

中考数学考点分析

配方法的应用

对所有一元二次方程都适用,但特别对于二次项系数为1,一次项系数为偶数的一元二次方程用配方法会更为简单。

【配方法】

一般步骤:

第一步:使方程左边为二次项和一次项,右边为常数项;

第二步:方程两边同时除以二次项系数;

第三步:方程两边都加上一次项系数一半的平方,把原方程化为的形式;

第四步:用直接开平方解变形后的方程.

古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:以和b为两直角边作Rt△ABC,再在斜边上截取BD=,则AD的长就是所求方程的解.

注意:

1.一元二次方程得一般形式特点为方程右边是0,方程左边是关于x的二次整式。

2.“a≠0”是一元二次方程的一个重要组成部分,也是它的一个判断标准之一,但b、c可以为0。若没有出现bx,则b=0;没有出现c,则c=0。

3.可以通过“去分母,去括号,移项,合并同类项”等步骤得到一元二次方程得一般形式。

【因式分解法】

一般步骤:

第一步:将已知方程化为一般形式,使方程右端为0;

第二步:将左端的二次三项式分解为两个一次因式的积;

第三步:方程左边两个因式分别为0,得到两个一次方程,它们的解就是原方程的解。

中考数学考点

一、平行四边形

1、平行四边形的性质定理:

平行四边形的对边相等。

平行四边形的对角相等(邻角互补)。

平行四边形的对角线互相平分。

2、平行四边形的判定方法:

定义:两组对边分别平行的四边形是平行四边形。

判定定理:两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两组对角分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

二、矩形

1、矩形的性质定理:

矩形的四个角都是直角。

矩形的对角线相等。

2、矩形的判定方法:

定义:有一个角是直角的平行四边形是矩形。

判定定理:有三个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

(对角线相等且互相平分的四边形是矩形。)

三、菱形

1、菱形的性质定理:

菱形的四条边都相等。

菱形的对角线相等,并且每条对角线平分一组对角。

2、菱形的判定方法:

定义:有一组邻边相等的平行四边形是菱形。

判定定理:四条边都相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

(对角线互相垂直且平分的四边形是菱形。)

四、正方形

1、正方形的性质定理:

正方形的四个角都是直角,四条边都相等。

正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

2、正方形的判定定理:

l有一个角是直角的菱形是正方形。

l有一组邻边相等的矩形是正方形。

l有一个角是直角且有一组邻边相等的平行四边形是正方形。

l对角线相等的菱形是正方形。

l对角线互相垂直的矩形是正方形。

l对角线相等且互相垂直的平行四边形是正方形。

l对角线相等且互相垂直、平分的四边形是正方形。

五、等腰梯形

1、等腰梯形的性质定理:

等腰梯形的两条对角线相等。

等腰梯形在同一底上的两个角相等。

2、等腰梯形的判定方法:

定义:两腰相等的梯形是等腰梯形。

判定定理:在同一底上的两个角相等的梯形是等腰梯形。

六、三角形的中位线

1、定义:

连接三角形两边中点的线段叫做三角形的中位线。

2、性质定理:

三角形的中位线平行于第三边,且等于第三边的一半。

七、其他定理或结论:

1、夹在两条平行线间的平行线段相等。

2、三角形的一条中位线与第三边上的中线互相平分。

3、菱形的面积等于其对角线乘积的一半。

4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的,所得的三角形的面积是原三角形面积的。

八、中点四边形

1.依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。

2.依次连接任意四边形各边的中点,就得到一个平行四边形。

3.依次连接平行四边形各边的中点,就得到一个平行四边形。

4.依次连接矩形各边的中点,就得到一个菱形。

5.依次连接菱形各边的中点,就得到一个矩形。

6.依次连接正方形各边的中点,就得到一个正方形。

7.依次连接等腰梯形各边的中点,就得到一个菱形。

8.依次连接两条对角线相等的四边形各边的中点,就得到一个菱形。

9.依次连接两条对角线互相垂直的四边形各边的中点,就得到一个矩形。

10.依次连接两条对角线相等且互相垂直的四边形各边的中点,就得到一个正方形。