初中数学圆的练习之平分线的直径
在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()
A.4 B.7C.3 D.5
解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,
∵⊙P的圆心坐标是(3,a),
∴OC=3,PC=a,
把x=3代入y=x得y=3,
∴D点坐标为(3,3),
∴CD=3,
∴△OCD为等腰直角三角形,
∴△PED也为等腰直角三角形,
∵PE⊥AB,
∴AE=BE=AB=×4=2,
在Rt△PBE中,PB=3,
∴PE=,
∴PD=PE=,
∴a=3+.
故选B.
初中数学圆的练习之垂直定理
在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:
①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.
其中正确结论的序号是()
A.①③B.①②③④C.②③④D.①③④
考点:垂径定理;菱形的判定;圆周角定理;解直角三角形.
分析:分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.
解答:解:∵点A是劣弧的中点,OA过圆心,
∴OA⊥BC,故①正确;
∵∠D=30°,
∴∠ABC=∠D=30°,
∴∠AOB=60°,
∵点A是点A是劣弧的中点,
∴BC=2CE,
∵OA=OB,
∴OB=OB=AB=6cm,
∴BE=AB?cos30°=6×=3 cm,
∴BC=2BE=6 cm,故B正确;
∵∠AOB=60°,
∴sin∠AOB=sin60°=,
故③正确;
∵∠AOB=60°,
∴AB=OB,
∵点A是劣弧的中点,
∴AC=OC,
∴AB=BO=OC=CA,
∴四边形ABOC是菱形,
故④正确.
故选B.
初中数学圆的练习之三角形的重心
G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?()
A.BCAC C.ABAC
分析:G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.
解:∵G为△ABC的重心,
∴△ABG面积=△BCG面积=△ACG面积,
又∵GHa=GHb>GHc,
∴BC=AC
故选D.