长沙中考数学考点总结
轴对称知识点
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。
13.直角三角形中,30角所对的直角边等于斜边的一半。
不等式
1.掌握不等式的基本性质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac
2.比较大小:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式两边同时乘以分母的最小公倍数。
②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。
③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。
⑤系数化为1。
2.图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
3.求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。
整式
1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
2.乘法
(1)同底数幂相乘,底数不变,指数相加。
(2)幂的乘方,底数不变,指数相乘。
(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
3.整式的除法
(1)同底数幂相除,底数不变,指数相减。
(2)任何不等于零的数的零次幂为1。
分数的性质
1.分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
2.分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。
3.分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。
4.当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。
5.一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。
正负数加减法则顺口溜
正正相加,和为正。
负负相加,和为负。
正减负来,得为正。
负减正来,得为负。
其余没说,看大小。
谁大就往,谁边倒。
中考数学考点总结
有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公式的几何意义
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
【考察内容】
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础
相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
【考察内容】
①平行线的性质(公理)
②平行线的判别方法
③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
【考察内容】
①考察平面直角坐标系内点的坐标特征
②函数自变量的取值范围和球函数的值
③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
【考察内容】
①方程组的解法,解方程组
②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
【考察内容:】
①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
③留意不等式(组)和函数图像的结合问题。
(5)数据库的收集整理与描述
分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。
【考察内容】
①常见统计图和平均数,众数,中位数的计算分析。
②方差,极差的应用分析
③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。
三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。
(1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
【考查内容】
①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。
②三角形全等融入平行四边形的证明
③三角形运动,折叠,旋转,拼接形成的新数学问题
④等腰三角形的性质与判定,面积,周长等
⑤直角三角形的性质,勾股定理是重点
⑥三角形与圆的相关位置关系
⑦三角形中位线的性质应用
(2)全等三角形
(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
中考数学考点
因式分解的方法
1.十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。
2.提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。