人教版初中数学中考考点

孙小飞

人教版初中数学中考考点

1.矩形性质定理1矩形的四个角都是直角

2.矩形性质定理2矩形的对角线相等

3.矩形判定定理1有三个角是直角的四边形是矩形

4.矩形判定定理2对角线相等的平行四边形是矩形

5.菱形性质定理1菱形的四条边都相等

6.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

7.菱形面积=对角线乘积的一半,即S=(a×b)÷2

8.菱形判定定理1四边都相等的四边形是菱形

9.菱形判定定理2对角线互相垂直的平行四边形是菱形

10.正方形性质定理1正方形的四个角都是直角,四条边都相等

11.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

12.定理1关于中心对称的两个图形是全等的

13.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

14.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

15.等腰梯形性质定理等腰梯形在同一底上的两个角相等

初中数学中考考点

1.等腰梯形的两条对角线相等

2.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

3.对角线相等的梯形是等腰梯形

4.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

5.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

6.推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

7.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

8.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

9.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

10.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

11.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

12.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

13.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

14.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

数学中考考点

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

2.切线的性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:

内角的一半: (右图)

(解Rt△OAM可求出相关元素, 、 等)

六、 一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

七、 点的轨迹

六条基本轨迹

八、 有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、 基本图形

十、 重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦