教学目标:
1、鼓励学生运用猜测、举例、验证等数学方法学习乘法分配律。
2、在学习的过程中,树立用规律简算,增强用规律验算得意识。
设计理念:
1、体现了“生活中处处有数学”。
2、课堂上灵活处理教材,选择适当的教法。
3、提高了小组的合作学习有效性。
4、促进了学生的主动性、个性化的学习。
课前准备:
教学挂图
教学过程:
一、创设情境,引出课题。
出示数学挂图:通过看图,把图意说一说。
二、提出问题,解答质疑。
弄清题以后,你能提出什么数学问题吗?(小组讨论)
生答师板书:济青高速公路全长约多少千米?怎样解答呢?
(1)要求全长多少千米,可以先求每辆车分别行驶的路程,再求全长的路程。
110 × 2 + 90 × 2 = 220 + 180 = 400(千米)还可以先求两辆车1小时行驶的路程,再求全长的路程。
(110+90)× 2 = 200 × 2 = 400(千米)
仔细观察,你能发现什么规律?(小组合作探讨)
生交流:发现两个算式的结果相等。 110×2 + 90×2 =(110+90)× 2这是个什么规律呢?让我们来验证一下吧。
(小组合作学习)生自己举例来验证
生答师小结:两个数的和乘一个数,可以把它们分别乘这个数,再把乘得的积相加,这个规律就叫做乘法分配律。你能用字母表示出这个规律吗?
生板书:(a + b)。c = a 。c + b 。c通过学习,让学生思考运用乘法分配律解决实际问题。让学生讨论交流自己的想法:
①可以进行验算。
②可以使计算简便。运用乘法分配律能使计算简便吗?(生小组举例探讨)
三、巩固练习
自主练习:第一题:让学生在小组中快速连接,并说一说运用了什么运算定律。
第二题:先让生自己解答,然后再组内互相说出师运用的什么定律。
第三题:先观察,再说出对错,然后把错的题重新做出来,集体订正,并说出错题错在哪里。
板书设计:乘法分配律
110×2 + 90×2(110 + 90)×2 = 220 + 180 = 200×2 = 400(千米)= 400(千米)
两个数的和乘一个数,可以先把它们分别和这个数相乘,再把乘得的积相加,这个规律就叫做乘法的分配律。
(a + b)。c = a 。c + b 。c
教学目标:
1、在理解掌握用字母表示数的基础上,学会用字母表示数量关系和计算公式。
2、让学生利用知识迁移,借助“用字母表示数”的经验和形式,在合作学习和自主探索的基础上学习本课内容。
教学重难点:
在理解掌握用字母表示数的基础上,学会用字母表示数量关系和计算公式,进一步理解“用字母表示数”的实质。
教学过程:
一、复习导入、知识回顾
(1)速度、时间、路程三个量之间的关系是什么?
(2)长(正)方形的周长公式和面积公式是什么?
学生思考、讨论、口答。师强调公式的完整性。
师:根据路程=速度×时间,你能写出它的另外两个变式吗?速度等于什么?时间等于什么?请你在练习本上写出来。
生:速度=路程÷时间,时间=路程÷速度
二、探究新知
师:用文字表示这些计算公式比较麻烦,你能想个简洁一点的表示方法吗?生:我们可以用字母来表示他们。
师:那就请你用自己喜欢的字母先表示一下“路程=速度×时间”这个公式,写完后可以同桌看一看。
指生上台展示自己的写法。预设可能的写法有:c=a×b,Z=xy,
师:这就是我们今天主要研究的内容—————用字母表示数量关系和计算公式。(板书标题)
刚才同学们的表示方法都不错,但在今后的学习中,一般用一个固定的字母来表示一个量,通常我们用s表示路程,用v表示速度,用t表示时间。那这个公式就可以表示为?
生:s=v t师:那这个公式还能怎样变化?生:v=s÷t,t=s÷v师:大家看这,我把s=v t写成v t=s行不行?
生应该有争论,师直接说明:这个公式求的是路程,在数学上通常把要求的量写在前面。师:那求路程直接写成vt行不行?生小组讨论,交流汇报:师见机点评,引出正确答案。师:第3个同学说的非常棒,咱们表示的是路程、速度和时间三个数量之间的关系,vt不能反映三个量之间的关系,所以咱们在表示公式时一定要把三个量都写出来。师:下面请你试着用字母表示一下长方形的周长和面积,以及正方形的周长和面积。学生自主探索,交流汇报,师总结并板书:
长方形的周长:C=(a+b)×2长方形的面积:S=a×b
正方形的周长:C=4a正方形的面积:S=a×a
师:a×a可以写成错误!未指定书签。a2,读作“a的平方”,表示两个a相乘。它跟2a一样吗?生:不一样。2a表示两个a相加。
师:这是两个容易混淆的小兄弟,大家可以从表示的意义上区分一下。师:小组内交流一下咱们还学过哪些数量关系,并试着用字母表示一下。
三、课堂小结
师:对照板书,回想一下咱们主要学了哪些知识?你有什么提醒同学们注意的吗?
四、作业设计
课本P11第5题
教学目标:
1、结合具体情境,在解决问题过程中逐步学会概括加法结合律、交换律并能用字母表示,并能用加法定律进行简单的计算。
2、培养学生观察、分析以及自学的能力,掌握一定的学习方法。
教学重难点:
1、引导学生通过观察比较、自主学习的方式探索、理解并掌握加法结合律。
2、培养学生观察、分析以及自学的能力。
教学准备:
1、教师准备:课件
2、学生准备:课本
教学过程:
一、情境引入
师:同学们,今天我们继续了解黄河的有关知识。请看情境图,你知道了哪些信息?根据图中的信息,你能提出什么数学问题?
学生观察情境图,了解黄河的走向,弄清楚黄河流域与黄河长度的区别,汇报自己发现的信息。学生自己提出问题。
师:黄河流域的面积约是多少万平方千米?谁会解答?根据学生回答板书。
二、学生根据图中信息独立列式
方法一:(39+34)+2=75(平方千米)
方法二:39+(34+2)=75(平方千米)
师:黄河全长约多少千米?可以怎样算?
学生列式:(3472+1206)+786 3472+(1206+786)师:观察这两组算式,你有什么发现?小组研讨,汇报交流师:这是一个规律吗?想办法验证一下。经过验证这确实是一个规律,叫加法结合律,你能用字母表示这个规律吗?
生:A+(B+C)=(A+B)+C
学习了加法结合律,加法中还有其他的规律吗?请完成填空,然后观察,看有什么发现?学生在观察的基础上发现,两个加数交换他们的位置,和不变。
师:这也是加法运算中的一个规律,叫加法交换律,能用字母表示它吗?
生:A+B=B+A
师:学习了加法的两个定律,能根据加法运算律解决实际问题吗?
三、观察下面算式,想想怎样算比较简便?
282+63+37
生:用加法结合律可以简算
四、自主练习
第1题。独立完成,说说自己的想法。
第3、4题。注意用简算。
五、简要回顾
这节课的学习内容
六、作业
自主练习3题。
一、素材的选取。
本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:
(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。1999年被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。
(2)山东的高速公路全国闻名。说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。
(3)以比较真实的数据为素材,体现了数学的价值。本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。
二、本单元的情景串。
本单元有2个信息窗。
依次是:单元知识分析单元教材解读信息窗1的解读已学的知识乘法的认识整数的四则混合运算(三下52×47—50×47用字母表示数(四上1)加法运算律(四上1)一般行程问题(二下p105,三上p76,p78,三下5)路程、时间、速度三者数量关系。本单元新学知识乘法结合律乘法交换律(乘除法各部分之间的关系)乘法分配律(相遇问题)运用乘法运算律进行简便运算。后续学习的知识乘法运算律在小数和分数计算中的推广用方程解行程问题(山东版有关行程问题的学习都安排在简易方程单元。)高速运转的长途汽车站高速运转的济青高速
1、情景图的解读。
此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的.下面附有一张20xx年济南长途汽车总站大巴车中巴日发送旅客情况统计表。
2、情景图中的信息。
是2组数据:
(1)平均每天发车的数量
(2)平均每车次的乘客人数。
3、例题的设置与功能。
本信息窗一共有3个例题,包含的知识点分别是:
(1)乘法结合律。
(2)乘法交换律。
(3)运用乘法交换律和结合律进行简便运算。乘除法各部分的关系。(第六题)
教学目标:
引导学生理解并掌握加法交换律和加法结合律,并会用字母表示他们,会用加法的交换律和结合律进行简便运算。培养学生观察、分析以及自学的能力,掌握一定的学习方法。
教学重难点:
1、引导学生通过观察比较、自主学习的方式探索、理解并掌握加法结合律。
2、培养学生观察、分析以及自学的能力。
教学过程:
一、课前复习
师:上一节课我们学习了用字母表示计算公式、数量关系,请同学们独立在练习本上完成以下题目:(用字母表示课件出示)
二、新授
1。情境导入
师:同学们,这个寒假我们学校的图书馆又运来了一些新书,现在这些新书已经上架了并被老师们贴上了精美的标签想不想一起去看看?生:想。
2。自主探索
师出示情境图提问:从图上你发现了哪些和咱们数学有关系的信息?生1:科技书有475本。生2:故事书有282。生3:文艺书有225本。
师:同学们的眼睛真亮,发现了这么多的数学信息,那么根据这些数学信息,你能提出那些数学问题?
问题1:科技书和故事书一共有多少本?
问题2:故事书和文艺书一共有多少本?
问题3:科技术和文艺书一共有多少本?
问题4:科技书比故事书多几本?
方法一:(475+225)+282
方法二:475+(282+225)
师生共同分析两种方法在计算方法、结果、解题思路上的相同点不同点。
指生回答你发现了什么规律?
生:我发现在加法算式中,三个数相加,先把前两个数相加,再加第三个数,或者先把后两数相加,再加第一个数,计算出来的结果是一样的。
师:这个规律在其他算式里是不是也适用呢?请同学们在自己的练习本上试着写几个这样的例子验证一下。
师:刚才我们发现的这个规律叫做加法结合律。你能用自己喜欢的字母把它表示出来吗?在练习本上写一写。(板书:加法结合律)(a+b)+c=a+(b+c)师:学习了加法的结合律,
第七个问题解决了。咱们来看第一个问题:科技书和故事书一共有多少本?找两位同学到黑板上做,其他同学做到自己的练习本上。生:它们的加数交换了一下位置,和没变。
师:这就是我们今天学的第二个规律——加法的交换律。两个数相加,交换它们的位置,和不变。
三、总结
谈谈这节课收获了什么?
四、布置作业
课本自主练习第5题