初一数学春季开学第一课教案

孙小飞

  初一数学春季开学第一课教案1

  教学目标

  (一)教学知识点

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  (二)能力训练要求

  1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

  2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

  3.通过学生共同观察和讨论,培养大家的合作交流意识.

  (三)情感与价值观要求

  1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.具有初步的创新精神和实践能力.

  教学重点

  1.体会方程与函数之间的联系.

  2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  教学难点

  1.探索方程与函数之间的联系的过程.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

  教学方法

  讨论探索法.

  教具准备

  投影片二张

  第一张:(记作§2.8.1A)

  第二张:(记作§2.8.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

  通过学生的讨论,使学生更清楚以下事实:

  (1)分解因式与整式的乘法是一种互逆关系;

  (2)分解因式的结果要以积的形式表示;

  (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

  (4)必须分解到每个多项式不能再分解为止。

  活动5:应用新知

  例题学习:

  P166例1、例2(略)

  在教师的引导下,学生应用提公因式法共同完成例题。

  让学生进一步理解提公因式法进行因式分解。

  活动6:课堂练习

  1.P167练习;

  2.看谁连得准

  x2-y2(x+1)2

  9-25x2y(x-y)

  x2+2x+1(3-5x)(3+5x)

  xy-y2(x+y)(x-y)

  3.下列哪些变形是因式分解,为什么?

  (1)(a+3)(a-3)=a2-9

  (2)a2-4=(a+2)(a-2)

  (3)a2-b2+1=(a+b)(a-b)+1

  (4)2πR+2πr=2π(R+r)

  学生自主完成练习。

  通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

  活动7:课堂小结

  从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

  学生发言。

  通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

  活动8:课后作业

  课本P170习题的第1、4大题。

  学生自主完成

  通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

  板书设计(需要一直留在黑板上主板书)

  15.4.1提公因式法例题

  1.因式分解的定义

  2.提公因式法

  初一数学春季开学第一课教案2

  一、教学目标

  (一)知识教学点

  1.了解;方程算术解法与代数解法的区别。

  2.掌握:代数解法解简易方程。

  (二)能力训练点

  1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。

  2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

  (三)德育渗透点

  1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

  2.渗透化“未知”为“已知”的化归思想。

  (四)美育渗透点

  通过用新的方法解简易方程,使学生初步领略数学中的方法美。

  二、学法引导

  1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

  2.学生学法:识记→练习反馈

  三、重点、难点、疑点及解决办法

  1.重点:代数解法解简易方程。

  2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

  3.疑点:代数解法解简易方程的依据。

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片。

  六、师生互动活动设计

  教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

  七、教学步骤

  (一)创设情境,复习导入

  (出示投影1)

  引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

  师:该问题如何解决呢?请同学们考虑好后写在练习本上.

  学生活动:解答问题,一个学生板演.

  师生共同订正,对照板演学生的做法,师问:有无不同解法?

  学生活动:回答问题,一个学生板演,其他学生比较两种解法.

  问;这两种解法有什么不同呢?

  学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).

  师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.

  [板书]1.5简易方程

  (二)探索新知,讲授新课

  师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?

  学生活动:踊跃举手,回答问题。

  [板书]含有未知数的等式叫方程

  接问:你还知道关于方程的其他概念吗?

  学生活动:积极思考并回答。

  [板书]方程的解;解方程

  追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,

  师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

  [板书]

  学生活动:相互讨论达成共识(合理。因把x=5代入方程3x+9=24,左边=右边,所以x=5是方程的解)

  【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

  师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

  (三)尝试反馈,巩固练习

  例1解方程(x/2)-5=11

  问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

  学生活动:思考并回答.(师板书)

  问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

  学生活动:思考并回答(师板书)

  解:方程两边都加上5,得

  (x/2)-5+5=11+5

  x/2=16

  (x/2)*2=16*2

  x=32

  问:这个结果正确吗?请同学们自己检验.

  学生活动:练习本上检验并回答问题.(正确)

  师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.

  学生活动:回答这两个问题.

  初一数学春季开学第一课教案3

  教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的'内容——数轴.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例变式练习

  例1画一个数轴,并在数轴上画出表示下列各数的点:

  例2指出数轴上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面数轴上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面数轴上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面数轴上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};