分数乘法教案汇编9篇

李盛

分数乘法教案 篇1

  本课题教时数:1本教时为第1教时备课日期9月17日

  教学目标

  进一步掌握分数数据的一般应用题的解题方法;进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  教学重难点

  进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭题

  二基本联系

  三、合练习

  四、堂小结

  五、作业

  这节课,我们复习分数乘法应用题,通过复习,我们要进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  1、提问:解答分数应用题的关键是什么?

  2、根据条件找单位1,说说数量关系式

  (题目见幻灯课件)

  3、解答应用题

  例1、从甲地到乙地公路长180千米,一辆汽车已经行了全程的,已经行了多少千米?

  问:这道题可以怎样想?为什么用乘法算?

  1、对比练习

  做复习题第9题

  问:这两题有什么相同的地方和不同的地方?

  在解法上有什么相同的地方?

  2、做复习第10题

  让学生说说是怎么想的?

  追问:第一步要求什么?把哪个数量看作单位1第二步求什么?又是把哪个数量看作单位1?

  3、做复习第11题

  4、做复习第12题

  讨论:有什么办法知道哪一辆车离中点近一些?

  这堂课复习了什么内容?分数乘法应用题的解题关键是什么?基本数量关系是怎样的?连续求一个数的几分之几的分数连乘应用题要怎样解答?

  复习第7、8题

  课后感受

  要让学生学会想到有困难时可借助线段图帮助理解。

  授课日期9月23日

分数乘法教案 篇2

  教学目标:

  1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、培养学生分析能力,发展学生思维。

  教学重点:

  理解题中的单位1和问题的关系。

  教学难点:

  抓住知识关键,正确、灵活判断单位1。

  教具准备:

  多媒体课件。

  教学过程:

  一、复习引入(激发兴趣,引入铺垫)

  1、列式计算。

  (1)20的 是多少?

  (2)6的 是多少?

  二、自主探究(自主学习,探讨问题)

  1、教学例1。

  出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示100千克白菜。

  吃了 ,吃了谁的 ?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图

  (3)分析数量关系,启发解题思路。

  A.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?

  B.分组讨论交流:依据吃了100千克的 把哪个量看作单位1呢?为什么?你是怎样想的?

  (4)列式计算。

  A.学生完整叙述解题思路。

  B.学生列式计算,教师板书: (千克)

  C.写出答话,教师板书:答:吃了80千克。

  (5)总结思路。

  根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。

  (6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?

  2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。

  三、拓展总结(应用拓展,盘点收获)

  1、判断下面每组中的两个量,应该把谁看作单位1。

  (1)乙是甲的 ,甲是乙的 。

  (2)甲是乙的 ,乙是甲的 倍。

  2、练习四1、2题,完成在练习本上,然后订正。

  3、操作:画出体育小组的人数是美术小组的 倍的线段图自己补充条件和问题并解答。

分数乘法教案 篇3

  教学目标:

  1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、引导学生在经历猜想、验 证等数学活动中,发展学生的思维能力。

  3、通过小组合作学习,培养学生进行交流的能力与合作意识。

  教学重点:

  使学生能够熟练分数的简便运算。

  教学难点:

  会用运算定律对分数进行简便运算。

  教具准备:

  自作课件。

  教学过程

  一、 复习导入

  1、 回顾学习过的乘法运算定律。

  (1)请学生说一说已学过的乘法运算定律,根据学生的回答,教师板书:

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac=bc

  (2) 用简便方法 计算下面各题。

  251348(9+12.5) 12524

  2、 下面的每组算式的左右两边有什么样的关系?

  1/21/3○1/31/2 (1/42/3)3/5○1/4(2/33/5)

  (1/21/3)1/5○1/21/5+1/31/5

  3、在学生发表自己的发现后,教师明确指出整数乘法的交换律、结合律和分配律也适用于分数乘法。

  二、 探究新知

  1、整数乘法运算定律推广到分数乘法

  (1) 各组观察复习第2题的每组中两个算式,你们发现了什么?

  (2) 各组发表本组同学的发现。

  2、 应用

  (1) 教学例5.计算3/51/65.

  ① 请试着做一做.

  ② 让学生互相交流自己的计算方法.(有的学生是按运算顺序计算的;有的是按运算定律进行计算的。)

  ③ 比较:哪一种方法简便?应用了什么运算定律?

  ④ 跟据学生的回答教师板书:

  3/51/65

  =3/551/6(应用乘法交换律)

  =1/2

  (2) 教学例6 .计算(1/10+1/4)4

  ① 让学生观察算式的特点,想一想,怎样计算比较简便?

  ② 学生计算完后,请学生说一说计算中应用了什么定律?

  ③ 根据学生的交流,教师板书:

  (1/10+1/4)4

  =1/104+1/44(应用乘法分配律)

  =2/5+1

  =1.2

  3、 小结

  在学生交流后,强调以下两点:

  (1) 整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

  (2) 在计算中,要根据题目的特点,灵活、合理的运用定律,使计算简便。

  三、 巩固练习

  1、 学生在书上直接.完成练习三的第6题。

  请学生说一说每个题目应用了什么运算定律?

  2、 完成第10页做一做。其中的第2小题教师可作适当指导。(可以把87看作86+1来计算)

  四、 课堂作业

  完成练习三的第7、8、9题。

  五、总结

  通过这节棵的学习你学会了什么?有哪些收获?

  六、板书设计:

  分数乘法的简便运算

  乘法运算定律 乘法交换律 ab=ba

  乘法结合律 (ab)c=a(bc)

  乘法分配律 (a+b)c=ac+bc

  例5 计算3/51/65例6 计算(1/10+1/4)4

  3/51/65 (1/10+1/4)4

  =3/551/6(应用乘法交换律) =1/104+1/44(应用乘法分配律)

  =1/2=2/5+1

  =1.4

分数乘法教案 篇4

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数乘法教案 篇5

  教学内容:

  分数乘法

  教学目标:

  1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  重点难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的'几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比较 的 和 占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  是整个操场 1的 , 是整个操场1的 。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案 篇6

  重点:

  (1)理解分数乘以整数的意义

  (2)理解并掌握分数乘以整数的计算法则

  难点:

  在计算的过程中,能约分的要先约分,然后再乘。

  设计思想:

  发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。

  教学过程:

  一、设疑激趣:

  1.下面各题怎样列式?你是怎样想的?

  5个12是多少?10个23是多少?25个70是多少?

  (概括:整数乘法表示求几个相同加数的和的简便运算)

  2.计算下面各题,说说怎样算?

  ++=++=

  说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

  同学之间交流想法:++==33=

  3=这个算式表示什么?为什么可以这样计算?

  教师板书++=3=

  3.出示:(课件1)

  这道题目又该怎样计算呢?

  二、自主探索:

  1.出示例1,读题,说说块是什么意思?

  2.根据已有的知识经验,自己列式计算。

  三、学生交流、质疑:

  1.学生汇报,并说一说你是怎样想的?

  方法a.++===(块)

  方法b.3=++====(块)

  2.比较这两种方法,有什么联系和区别?

  (联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)

  教师根据学生的回答,板书++=3

  3.为什么可以用乘法计算?

  (加法表示3个相加,因为加数相同,写成乘法更简便。)

  4.3表示什么?怎样计算?

  (表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)

  5.提示:为计算方便,能约分的要先约分,然后再乘。

  (这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)

  四、归纳、概括:

  1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)

  2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)

  (根据学生的回答,教师进行板书)

  五、巩固、发展

  1.巩固意义:

  (1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)

  (2)改写算式:

  +++=()()

  +++++++=()()

  (3)只列式不计算:3个是多少?5个是多少?

  2.巩固法则:

  (1)计算(说一说怎样算)

  462148

  (说一说,为什么先约分再相乘比较简便?以8为例来说明)

  (2)应用题:

  a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

  b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

  (3)对比练习:

  a.一条路,每天修千米,4天修多少千米?

  b.一条路,每天修全路的,4天修全路的几分之几?

  3.发展提高:

  (1)出示(课件1):说说怎样想?

  (2)出示(课件2):说说怎样想?

分数乘法教案 篇7

  教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .

  教学过程

  一、基训

  A、1、填》、《、=A》B》0

  4/5A/B( )A/B

  4/5B/A( )B/A

  A/54/B( )4/5

  2、一个真分数乘以一个假分数,结果大于真分数,对吗?

  3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?

  B、 1.分数乘以整数的意义是什么?

  2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?

  3.计算带分数的乘法应注意些什么?

  4.分数乘法的简便运算可以应用哪些运算定律?

  5.解答分数乘法应用题的关键是什么?

  6.倒数的意义是什么?

  学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相

  关的问题,如运算定律的表达式以及字母可以表示什么数等等。

  二、综合练习

  1.找1。

  甲是乙的35 。乙是甲的35 。

  甲比乙的35 多1。乙比甲的35 少1。

  甲的35 和乙同样多。

  学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

  2.做口算练习。

  3.求下面各数的倒数。

  2/7 1/9 6 20 0.6

  学生独立解答,教师巡视,发现问题及时纠正。

  4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?

  5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?

  三、小结(略)

  四、补充作业。

分数乘法教案 篇8

  教学目标

  1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、培养学生大胆猜测,勇于实践的思维品质。

  教学重点:

  会进行分数的混合运算,运用运算定律进行简便计算。

  教学难点:

  灵活运用运算定律进行简便计算。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1、运算定律。

  我们在四年级时学习过乘法的运算定律,同学们还记得吗?

  (学生回答,教师板书运算定律)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  2、这些运算定律有什么用处?你能举例说明吗?

  2574 0.36101

  (学生口述自己是怎样应用乘法的运算定律简算上面各题的。)

  二、自主探究(自主学习,探讨问题)

  1、引入

  同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

  (板书课题:整数乘法的运算定律能否推广到分数乘法)

  2、推导运算定律是否适用于分数。

  (1)学生发表对课题的见解。

  (2)验证

  有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

  3、教学例5.

  (1)出示: ,学生小组合作独立解答。

  4、教学例6.

  (1)出示: ,学生小组合作独立计算。

  (2)小组汇报学习成果,说一说你们组应用了什么运算定律。

  5、小结

  应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

  三、拓展总结(应用拓展,盘点收获)

  1、完成练习三的第6题。

  学生说一说应用了什么运算定律。

  2、完成课本第10页的做一做题目。

  其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。

  3、总结

  这节课你有什么收获?

分数乘法教案 篇9

  教学内容:教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。

  教学目标:

  1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。

  2、使学生进一步积累解决问题的策略,增强数学应用意识。

  教学过程:

  一、复习导入

  林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?

  独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。

  如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。

  二、教学例3

  1、出示例3

  林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?

  (1)比较复习题与例3的不同。

  问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”

  (2)说说“今年的班级数比去年增加了”的含义。

  是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?

  (3)让学生在线段图上表示出今年班级的数量。

  (4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。

  板书:24+24,说说24的含义,独立解答。

  (5)(5)想一想,还可以怎样计算?

  板书:24(1+),说说(1+)的含义,独立解答。

  (6)小结:怎样解答这类应用题?

  三、巩固练习

  1、做练一练的第1题。

  先说一说可以怎样想,再独立解答。

  2、做练习十六的第5题。

  独立完成,可以先画图思考,再列式解答。

  比较两题的解法有什么联系和区别。

  3、做练习十六的第8题。

  让学生先画线段图表示两题中的已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。

  比较两题的解法有什么联系和区别。

  4、做练习十六的第9题。

  先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。

  比较两题的解法有什么联系和区别。

  四、全课小结,揭示课题。

  通过这节课的学习,你有什么收获?在解题时要注意什么?

  结合学生的回答,揭题板题。

  五、课堂作业

  做练习十六的第6、7题。