数列、数列的通项公式教案

孙小飞

数列、数列的通项公式教案

  目的:

  要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

  重点:

  1数列的概念。

  按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。

  2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。

  从映射、函数的观点看,数列可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的.项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。

  难点

  根据数列前几项的特点,以现规律后写出数列的通项公式。给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。

  过程:

  一、从实例引入(P110)

  1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 3. 4. -1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…

  二、提出课题:

  数列

  1.数列的定义:

  按一定次序排列的一列数(数列的有序性)

  2. 名称:

  项,序号,一般公式 ,表示法

  3. 通项公式:

  与 之间的函数关系式如 数列1: 数列2: 数列4:

  4. 分类:

  递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。

  5. 实质:

  从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。

  6. 用图象表示:

  — 是一群孤立的点 例一 (P111 例一 略)

  三、关于数列的通项公式

  1. 不是每一个数列都能写出其通项公式 (如数列3)

  2. 数列的通项公式不唯一 如: 数列4可写成 和

  3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二 (P111 例二)略

  四、补充例题:

  写出下面数列的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0. 2. , , , , 3.7,77,777,7777 4.-1,7,-13,19,-25,31 5. , , ,

  五、小结:

  1.数列的有关概念

  2.观察法求数列的通项公式

  六、作业:

  练习 P112 习题 3.1(P114)1、2

  七、练习:

  1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;(1) , , ,( ), , …(2) ,( ), , , …

  2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、

  3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式

  4.已知数列an的前4项为0, ,0, ,则下列各式 ①an= ②an= ③an= 其中可作为数列{an}通项公式的是A ① B ①② C ②③ D ①②③

  5.已知数列1, , , ,3, …, ,…,则 是这个数列的( )A. 第10项 B.第11项 C.第12项 D.第21项

  6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。

  7.设函数 ( ),数列{an}满足

  (1)求数列{an}的通项公式;

  (2)判断数列{an}的单调性。

  8.在数列{an}中,an=

  (1)求证:数列{an}先递增后递减;

  (2)求数列{an}的最大项。

  答案:

  1.(1) ,an= (2) ,an=

  2.(1)an= (2)an= (3)an= (4)an=

  3.an= 或an= 这里借助了数列1,0,1,0,1,0…的通项公式an= 。

  4.D

  5.B

  6. an=4n-2

  7.(1)an= (2)<1又an<0, ∴ 是递增数列