圆的周长教案八篇

马振华

圆的周长教案 篇1

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:求圆的直径和半径。

  教学难点:灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。458

  2、求出下面各圆的周长。

  C=r3.14223.144=6.28(厘米)=83.14=25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=r

  (3)根据上两个公式,你能知道:

  直径=周长圆周率半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m求:d=?

  解:设直径是x米。

  3.773.143.14x=3.77

  1.2(米)x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c(2)求:r=?

  解:设半径为x米。

  3.142x=1.21.223.14

  6.28x=1.2=0.191

  x=0.1910.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  ⑴3.148

  ⑵3.1482

  ⑶3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20xx.14=125.6(厘米)

  45分钟走了多少厘米?125.6=94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、作业。P65-66第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。

圆的周长教案 篇2

  教学内容:九年义务教育人教版第11册

  教学目标:

  1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的 周长计算公式;

  2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

  3、培养学生情感,使学生受到爱国主义教育。

  教学重点:推导圆周长的计算公式。

  教学难点:理解圆周率的意义。

  教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。

  教学过程:

  一、启发

  1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)

  2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?

  揭示课题。(板书:圆的周长)

  二、探究

  1、观察:看屏幕上的圆,说一说什么叫圆的周长?

  2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?

  3、比一比:拿出两个大小不同的圆形纸片。

  哪个圆的周长长一些?

  4、量一量:(分小组合作)

  学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。

  5、信息反馈: ① 小组汇报所测量的圆的周长是多少?

  板书: 周长

  ○ 12cm多一些

  ○ 31cm多一 些 ○ 47cm多一些

  ② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)

  ③(课件演示)绳测法和滚动法的操作过程;

  ④讨论:能用这方法测量出这个圆的周长吗?

  (教师演示)拿一根栓了重物的绳子在空中抡了一圈。。

  如何才知道它的周长呢 ?

  6、①猜一猜: 圆的周长和圆的什么有关系?

  ②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的周长和它的直径有关系)

  7、①再猜 一猜,圆的周长和它的直径有什么样的关系?

  ②学生分成四人小组,测量、计算、讨论圆和直径的关系。

  ③小组汇报测量结果。

  板书: 周长 直径

  ○ 12cm多一些 4cm

  ○ 31cm多一 些 10cm ○ 47cm多一些 15cm

  结论:圆的周长是直径的3倍多一些。

  ④课件出示:验证学生发现的规律是否具有普遍性。

  ⑤小结:无论圆的大小、圆的周长总是它直径的3倍多一些。

  6、介绍圆周率,结合进行爱国主义教育。

  ①教师引出“圆周率”,介绍用字母“∏”来表示,并介绍读法。

  ②出示祖冲之画像,配音介绍祖冲之及圆周率知识(∏≈3。14)

  ③对学生进行爱国主义思想教育。

  7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?

  (圆的`周长=直径×圆周率)(C=∏D或C=2∏r)

  三、知

  1、让学生把测量的三个圆用公式计算出三个圆的周长来。

  2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。

  (绳子的长度就是圆的半径)

  3、抢答:①D=1分米,C= ?

  ②r=1厘米,C=?

  ③C=12。56米,D=?

  4、出示例1,让学生独立计算。

  5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)

  四、评议

  1、本节课你学到了什么?有什么体会?有何感受?

  2、本节课学习主要采用了什么方法?

  3、本节课学习后对你生活有什么帮助?

  4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?

圆的周长教案 篇3

  教学目标:

  1.生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

  3.合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  探究圆周长与直径之间的关系,掌握圆周长公式。

  教学难点:

  理解圆周率的意义,能运用圆的周长公式解决一些简单的实际问题。

  课前准备:

  多媒体课件、大小不同的圆、线、小尺。

  教学过程:

  一、教学例4。

  1.话交流:同学们,我们经常听人们说:“我买了一个28的自行车。”“我买了一个24英寸的彩电”。这里的“28”和“24英寸”都是表示物体规格的数字。

  2.件出示例4题目及图示,全班交流:你从图中了解哪些信息?

  3.组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

  4.件演示车轮滚动,验证学生的发现。

  5.班交流:

  你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

  二、教学例5。

  1.件出示例5,全班交流:这样的实验你们课前做了吗?

  2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

  3.名汇报,全班交流。

  ⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

  ⑵ 纵观各组的实验结果,你们有什么发现?

  圆的周长总是直径的3倍多一些。

  4.生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

  5.括圆周长公式。

  ⑴ 圆周率用字母π表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说π、C、d之间有什么关系?

  学生先在小组内交流再全班交流。

  (板书:C÷d=π,C÷π=d ,C=πd)

  ⑵ 求圆的周长用哪个公式?(C=πd或C=2πr)

  三、巩固拓展

  1.成“试一试”⑴ 学生独立计算。⑵ 全班展示交流。

  2.成“练一练”。

  3.成练习十四第1题。学生独立计算,再全班交流。

  4.成练习十四第2题。

  ⑴ 学生独立计算。⑵ 全班展示交流。⑶ 学生订正。

  5.成练习十四第3题。指名口头列式,学生集体计算。

  6.成练习十四第4题。学生独立计算后再汇报交流。

  四、总结延伸

  本节课,你有哪些收获?还有什么疑问?

  板书设计:

  圆的周长

圆的周长教案 篇4

  教学内容:

  义教六年制小学数学第十一册第110-112页例1。

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

圆的周长教案 篇5

  教学内容:

  教学目标:

  1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

  2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

  3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

  教学重点:理解圆周率,能计算圆的周长。

  教学难点:探索并理解圆的周长与直径的商为定值。

  教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

  教学策略:自主探索、讨论交流、点拨与练习

  教学程序:

  一、激活目标

  出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

  二、活动建构

  1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

  2、介绍圆周率的由来。

  任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

  组织学生阅读资料,谈感受。

  3、推导出:c=πd或c=2πr

  4、计算花坛的周长,解决相关问题。

  圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

  三、解释应用

  一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

  四、反馈测评

  1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

  15厘米

  A

  B

  2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?

  3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

  五、课堂小结

  我的最大收获是什么?我有什么遗憾?我有什么疑问?

  希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

圆的周长教案 篇6

  【教学目标】:

  1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

  2、能运用圆的周长的计算公式解决一些简单的数学问题。

  3、初步体会转换思想,学到一些解决实际问题的数学方法。

  【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

  【教学难点】:理解圆周率的意义

  【教学难点】:教师:课件(U盘)、表格、卷尺。

  学生:线或卷尺、计算器。

  【教学过程】:

  (1)教学准备:

  1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,

  8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

  6是3的( )倍。 20是5的( )倍。

  22是7的( )倍。

  2、把倍数关系句改写成等式。

  ①6是3的2倍 ( )

  ②20是5的4倍。 ( )

  ③22是7的22/7 倍。( )

  ④C是d的a倍。( )

  3、 数学是一门关系学

  正方形的周长与边长的关系

  C=4a

  正方形的周长 是 边长的4倍

  (2)新授过程。

  自学课本第62页,思考

  1、什么是圆的周长?

  答:围成圆的曲线的长是圆的周长。

  2、直观认识圆的周长。演示动画。

  3、你认为 圆的周长与正方形的周长最大的不同在哪里?

  4、课本里介绍了几种度量圆的周长的方法?

  围绳法 滚动法

  5、动画演示滚动法

  6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长

  的大小与什么有关系?

  7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

  8、动手操作验证猜想

  其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

  π是一个无限不循环小数。

  π=3.141592653……

  在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

  9、投影展示π的前900位,体会π的小数数位的庞大。

  10、圆周率前6位谐音记忆

  π=3.14159…… 山 巅一寺一壶酒 巅 diān

  11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

  c=2πr。

  12、对比 : c=4 a c=πd

  (三)知识应用。求下面圆的周长

  (四)课堂作业。《课本》P65 练习十四 1题、2题

圆的周长教案 篇7

  教学目标:

  ⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。

  ⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

  教学流程:

  一、揭示课题

  ⑴猜测这节课的学习内容。

  ⑵揭示课题--圆的周长。

  二、确定探索新知的方向。

  ⑴观察课前画在黑板上的两幅图。

  分别指出正方形、圆形和正六边形的周长。

  ⑵沟通联系。

  找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

  ⑶比较周长的长短。

  以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

  ⑷确定探究方向。

  量出圆的周长和直径,算出它们之间的倍数。

  ⑸准备数据采集。

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  三、合作探究新知。

  ⑴学生操作活动。

  小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

  教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

  教师在分组活动中采集到的数据。(是后加的,时加的)

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  1

  15.5

  5

  3.10

  2

  8.9

  2.9

  3.07

  3

  14

  4.3

  3.26

  4

  7.6

  2.5

  3.04

  5

  8.9

  2.7

  3.30

  ⑵合理,得出公式,

  看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

  ⑶介绍祖冲之。

  四、利用新知解决简单的数学问题。

  ⑴说出计算周长的算式。

  ⑵口答练习十八1~2。

  ⑶作业练习十八3~4。

圆的周长教案 篇8

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.