四边形性质探索的教案

王明刚

四边形性质探索的教案

  一、学生起点分析:

  学生的知识技能基础:学生已经认识了生活中的轴对称现象,掌握了轴对称图形的概念及其性质,因此在学习中心对称图形时可以进行比较。另外,学生还掌握了一些常见中心对称图形的性质,例如平行四边形、矩形、圆形、正方形等,所以在研究这些图形的中心对称性时是有帮助的。

  学生的活动经验基础:生活中存在大量的实例,可以作为这一节课的活动基础。

  二、学习任务分析:

  基于已有了研究轴对称图形的基础以及旋转知识,本节课教学的重点在于理解中心对称图形的定义及其性质,难点在于理解中心对称图形的定义,会判断哪些图形是中心对称图形,并且还要发展学生的应用意识,会寻找生活中的中心对称图形,会分析各种图案,标志是中心对称图形,还是轴对称图形。

  因此本节课的教学目标是:

  (1)经历观察发现中心对称图形的有关概念以及性质的过程,理解中心对称图形的概念和性质。

  (2)会判断一些常见图形是否是中心对称图形。

  (3)会判断生活中的一些图案,图标是否具有中心对称性。

  (4)学会运用数学眼光分析身边事物的能力。

  (5)培养审美能力。

  教学重点:理解中心对称图形的定义及其性质

  教学难点:理解中心对称图形的定义,会判断哪些图形是中心对称图形

  三、教学过程设计:

  第一环节:学生课前收集一些图案,图标等。

  以4人合作小组为单位,开展收集图案活动:

  (1)美丽图案

  (2)各车的标志

  (3)商标

  活动方式:提前准备

  活动目的:通过以上活动,培养学生运用数学眼光分析周围世界。

  第二环节:情境引入

  在学生收集到的图案中,首先请学生先选择出是轴对称图形的图案,与学生共同回顾轴对称图形的知识。然后,教师挑出具有另一种对称性的图案(中心对称的),引入课题。

  第三环节:学习新知

  1.探究活动:平行四边形ABCD

  运用电脑演示下列过程:连结对角线AC,BD交点为O,确定原来平行四边形的位置,然后使它绕着点O旋转180°。

  2.提出问题:(1)此时的平行四边形是否与原来的图形重合?

  (2)旋转中心,旋转角各是多少?

  (3)为什么旋转后的平行四边形会与原平行四边形重合?

  3.定义概念:

  像平行四边形这样,一个图形绕着一个固定点旋转180°后能与原图形重合的`图形叫中心对称图形,这个固定点叫对称中心。

  观察与思考:设点是某个中心对称图形上的一点,绕对称中心0旋转180°后,它变成了点B,点A与点B就是一对对应点,且OA=OB

  结论:中心对称图形上的每一对对应点所连接的线段都被对称中心平分。做一做:

  (1)平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并验证作的结论。因此还可以验证平行四边形的哪些性质?

  (2)线段是中心对称图形吗?对称中心是什么?

  (3)你还能找到哪些常见的几何图形是中心对称图形?它们的对称中心是什么?

  活动方式:1)四人小组活动,合作交流:

  2)全班讨论

  活动目的:尽可能多地找出常见的图形进行知识归纳,其中包括矩形,菱形,正方形,正三角形,圆等。

  议一议:1)下面的扑克牌中,哪些牌的牌面是中心对称图形吗?

  红桃2 黑桃9 方片J 黑桃8 梅花3

  答:黑桃K,方片9

  2)再举出生活中的一些中心对称图形

  第四环节:练习提高:

  随堂练习1,2

  第四环节:课堂小结

  1)这节课我们认识了中心对称图形

  2)像线段、平行四边形、圆、偶数边的正多边形就是中心对称图形

  3)会辨认生活中哪些图案是中心对称图形

  第五环节:作业布置

  习题4.12 3

  四、教学反思

  中心对称图形比轴对称图形难理解和为学生所接受,因此应该充分运用多媒体动画辅助教学,帮助学生理解中心对称图形的概念和性质,并能认识到生活中哪些图案是中心对称图形为了发展学生兴趣,可以引导学生进行图案设计,把所学知识应用于实际,提升学习水平和能力。