圆的周长教案范文

马振华

  一、教学内容:

  圆的周长计算方法与应用

  二、教学目的:

  1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。

  2.培养学生的观察、比较、分析、综合及动手操作能力。

  3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  三、教学重点:

  1.理解圆周率的意义。

  2.推导出圆的周长的计算公式并能够正确计算。

  四、教学难点:

  理解圆周率的意义。

  五、教学过程:

  (一)创设情境,引入新课

  1、用多媒体出示:龟兔赛跑路线图。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

  b.什么是圆的周长?请你摸一摸你手中圆的周长。

  3、师:今天我们就来研究圆的周长。并出示课题。

  (二)引导探究,学习新知

  1.推导圆的周长公式

  (1)学生讨论

  a.正方形的周长跟什么有关系?有什么关系?

  b.你认为圆的周长和什么有关系?

  (2)猜测

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?

  (3)动手操作

  a.以小组合作学习方式进行实践, 1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

  师:看哪一组配合好,速度快,较精确。开始!

  b.汇报小结。

  师:用实物投影展示整理的表格。

  师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的.三倍多一些?

  2.认识圆周率、介绍祖冲之

  (1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14

  (2)介绍祖冲之

  3.归纳圆的周长公式

  (1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  师板书:C=πd

  (2)圆的周长还可以怎样求?由于 d=2r则:C=2πr。师板书:C=2πr

  师问:圆的周长分别是直径与半径的几倍?

  (三)巩固应用,强化新知

  1.求下面各圆的周长。

  1)d=2米 2)d=1.5厘米

  2.求下面各圆的周长。

  1)r=6分米 2)r=1.5厘米

  3.判断题

  (1)π=3.14 ( )

  (2)计算圆的周长必须知道圆的直径 ( )

  (3)只要知道圆的半径或直径,就可以求圆的周长。 ( )

  4.选择题

  (1)较大的圆的圆周率( )较小的圆的圆周率。

  a 大于 b 小于 c 等于

  (2)半圆的周长( )圆周长。

  a 大于 b 小于 c 等于

  5.课堂反馈

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  6.实践操作

  请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。

  (四)课堂总结,梳理知识

  师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

  反思:

  “圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的'学习环节。

  1.动手实践,探究圆周长的测量方法。

  怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。

  当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。

  学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。

  2.探究圆周长与直径的关系,寻找圆周长的计算方法。

  在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。

  学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。

  在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。