《比例》教学设计

王明刚

《比例》教学设计1

  教案背景:

  本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。

  教学课题:《反比例》

  教材分析:

  教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

  教学目标:

  知识与技能:

  1.让学生在实践活动中体验生活中需要比例尺。

  2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。 过程与方法:

  3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  情感、态度与价值观:

  4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  教学重点:正确理解比例尺的含义。

  教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,体会比例尺的实际意义,学会解决生活中的一些实际问题。 教学法

  教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲

  解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。

  学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法

  进行学习,必要时进行合作交流。

  教学课时:一课时

  教学过程:

  一、创设情境,提出问题:

  老师为了考考大家,给同学们出个脑筋急转弯:一只蚂蚁不到20秒钟从西安爬到了北京,你知道为什么吗?

  生思考回答:在地图上。

  师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识? 生:图形的放缩。

  师:同学们说得真好,如果要给我们的教室画一张平面图,它应该是

  什么形状的?你会画吗?

  生:长方形。

  师:那我们来估一估它的长和宽吧

  (生:长大约9米,宽大约6米 。 )

  师:请大家在练习本上画出教室的平面图。(生画师巡视)

  学生动手操作,反馈。

  师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故

  意)?为什么?

  生:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩

  小一定的倍数在纸上表示出来。

  师:你的想法很对,跟笑笑同学的想法一样。

  师板书学生结果:逐步引出1:100

  1学生汇报。

  2学生讨论:

  学生:图上1厘米长的线段表示实际100厘米。

  3引出课题。

  教师:这就是今天要学习的新知识——比例尺(板书课题)

  二、合作探究,解决问题:

  1.介绍各种比例尺的名称。

  师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文

  字比例尺、线段比例尺。

  2.认识比例尺的意义。

  师:比例尺1:500是什么意思?

  生1:就是图上1厘米的长度代表现实中的500厘米。

  生2:实际距离是图上距离的500倍。

  1生3:图上距离是实际距离的。 500

  师:比例尺1:2200000是什么意思?

  生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。 生2:?

  师:同学们讲得都对,那到底什么是比例尺?

  学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际

  距离的比。

  小结比例尺的特点及应注意的问题.

  三、练习巩固,检测反馈。

  1、练习1、求比例尺在一幅地图上,用20cm的线段表示实际距离10

  千米。求图上距离和实际距离的比?

  学生独立做,集体反馈。

  练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米? 02040 60千米

  练习3、4略

  2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

  指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。 在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

  3、再次认识比例尺

  <1>出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?

  <2>电脑课件演示。

  <3>求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

  <4>讨论板书:

  比例尺把实际距离缩小一定的倍数如1:30000000

  把实际距离扩大一定的倍数如200:1

  <5>引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

  补充板书:

  把实际距离按原来的大小画出来,比例尺就是1:1

  四、合作总结,整理内化。

  通过本节课的学习,你有哪些收获?

  五、布置作业。

  1、请大家把书翻到30页,量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

  算一算笑笑卧室

  实际的长是()米,宽是()米,面积是()平方米。

  学生独立完成。

  2.同学们,你们能自己确定比例尺,把自己家的平面图画下来吗? 板书设计

《比例》教学设计2

  教学目标:

  1、能正确的判断应用题中涉及到的量成什么比例关系。

  2、能正确的用比例的知识解答比较简单的应用题。

  3、培养学生的分析、判断和推理能力。

  教学重点:

  正确的判断应用题中的数量关系之间存在着什么样的比例关系。

  教训难点:

  能根据正比例、反比例的意义列出含有未知数的等式。

  教学过程:

  一、实际操作,引入新知识。

  (1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。

  (3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?

  (4)你是怎样算的,可以列出式子吗?

  二、教学例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?

  1、指导分析,理解题意。

  2、学生自己想办法解答。

  3、师生探究用比例的知识解答。

  A、这道题中涉及到的量有哪些?

  B、哪种量一定(不变)?从哪里知道的?

  C、路程和时间成什么比例关系?判断的依据是什么?

  D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?

  2小时和140千米相对应,5小时和X千米相对

  应,即可以列出比例:140 :2=X :5

  E、学生列式并解答。

  F、说说怎样检验我们的计算结果呢?

  4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?

  一辆汽车2小时行驶140千米,照这样的速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?

  学生自己解答,老师及时收集和处理反馈信息。

  三、教学例2

  一辆汽车从甲地开往乙地,每小时行驶70千米, 5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?

  1、引导分析,理解题意,找到相关的量。

  2、准确判断它们成什么比例关系。

  3、学生解答,及时收集和处理反馈信息。

  比较例1、例2的异同。

  四、小结:

  用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。

《比例》教学设计3

  教学内容:

  教科书第59页例5以及相关练习题。

  教学目标:

  1、使学生能正确判断题中涉及的量是否成正比例关系。

  2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

  3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

  4、在成功解决生活中的实际问题中体会数学的价值。

  教学重点:

  利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

  教学难点:

  正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

  教具准备:

  小黑板

  教学过程:

  一、复习铺垫,激发兴趣。

  1、填空并说明理由。

  (1)速度一定,路程和时间成( )比例。

  (2)单价一定,总价与数量成( )比例。

  (3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

  【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

  3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

  生1:把旗杆放下量。

  生2:爬上去量。

  生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

  师:相信通过这一节课的学习,你一定会找到解决的方法的。

  【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

  二、揭示课题、探索新知。

  1、小黑板出示例5

  张大妈:我们家上个月用了8吨水,水费是12.8元。

  李奶奶:我们家用了10吨水,上个月的水费是多少钱?

  思考:题中告诉了我们哪些信息?要解决什么问题?

  师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  (1) 学生自己解答。

  (2) 交流解答方法,并说说自己想法。

  算式是:12.8÷8×10

  =1.6×10

  =16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

  (也可以先求出用水量的倍数关系再求总价。)

  10÷8×12.8

  =1.25×12.8

  =16(元)

  【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

  师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  (3)小黑板出示以下问题让学生思考和讨论:

  1)题目中相关联的两种量是( )和( ) ,说说变化情况。

  2)( )一定,( )和( )成( )比例关系。

  3)用关系式表示是( )

  (4)集体交流、反馈

  板书: 水费 用水吨数

  12.8元 8吨

  ?元 10吨

  水费:用水吨数 = 每吨水的价钱(一定)

  师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程):

  学生独立完成,教师巡视。

  反馈学生解题情况。

  8

  12.8

  10

  χ

  解:设李奶奶家上个月的水费是χ元。

  12.8 :8 =χ:10 或 =

  8χ=12.8×10 8χ= 12.8×10

  χ=128÷8 χ=128÷8

  χ= 16 χ= 16

  答:李奶奶家上个月的水费是16元。

  【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

  (6)将答案代入到比例式中进行检验。

  你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  生交流,汇报。

  2、变式练习。

  刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

  张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  (1)比较一下改编后的题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,学生说一说你是怎么想的?

  3、概括总结

  师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

  学生讨论交流,汇报。

  师总结:

  1、分析找出题目中相关联的两种量。

  2、判断他们是否是正比例关系。

  3、根据正比例的意义列出比例。

  4、最后解比例。

  5、检验作答。

  【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

  三、巩固练习,形成技能。

  1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

  师提醒:同一时间、同一地点的身高和影长成正比例。

  学生读题后,先思考以下三个问题。

  ① 题中已知哪两种相关联的量?

  ②它们成什么比例关系?你是根据什么判断的?

  ② 你能列出等式吗?

  生独立完成,并汇报解答过程。

  2、教科书P60“做一做”。

  生独立解答。

  【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

  四、全课总结

  通过今天的学习,你有什么收获?

  五、布置作业

  练习九第3、5题。

  板书设计:

  用比例解决问题

  水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

  12.8元 8吨

  ?元 10吨 12.8 :8 =χ:10

  8χ= 12.8×10

  水费:用水吨数 = 每吨水的价钱(一定)

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元

《比例》教学设计4

  一、教材分析

  【复习内容】

  教科书第12册94页“整理与反思”和94-95页“练习与实践”1-6题

  【知识要点】

  1.比和比例的意义与性质:

  比比例

  意义两个数的比表示两个数相除。(老教材:两个数相除又叫做这两个数的比.)表示两个比相等的式子叫做比例。

  基本

  性质比的前项和后项都乘或除以相同的数(0除外),比值不变。在比例里,两个外项的积等于两个内项的积。

  2.比、分数与除法的关系:

  a:b==a÷b(b≠0)

  3.求比值和化简比的联系与区别:

  意义方法结果

  求比值比的前项除以比的后项所得的商叫做比值。前项除以后项一个数(整数、小数、分数)

  化简比把两个数的比化成最简单的整数比前项和后项都乘或除以相同的数(0除外)一个比

  4.图形的放大与缩小(新教材增加的内容)

  5.解比例

  6.按比例分配的实际问题

  【教学目标】

  1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

  2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

  3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  二、教学建议

  复习比的知识抓住三点进行:一是举实例说说什么是比,既要有两个同类数量的比,也要有两个不同类数量的比,使学生对比的含义有比较全面的理解。二是通过改写a∶b,沟通比与分数、除法的关系,从除数不能是0体会分母、比的后项也不能是0。三是找出比的基本性质、分数的基本性质和商不变的规律之间的内在联系,完善认知结构。

  练习与实践中,要利用第3题里的比组成比例,回忆比例的意义和性质,理解把照片①变成照片④是把图形按一定的比缩小,把照片④变成照片①是按一定的比把图形放大。

  三、知识链结

  1.认识比(教科书六上P68、69例1例2)

  2.比的基本性质(教科书六上P70、例3)

  3.化简比(教科书六上P71例4)

  4.按比例分配(教科书六上P75例5)

  5.图形的放大与缩小(教科书六下P38、39例1例2)

  6.比例的意义和性质(教科书六下P40例3、P43例4)

  7.解比例(六下P45例5)

  四、教学过程

  (一)比的知识:

  1.举例说说什么是比?什么是比的基本性质?

  2.说一说用比的知识可以解决哪些实际问题。

  3.完成教科书p94“练习与实践”

  (1)完成第一题:学生独立数出班上男女生人数,再完成此题。

  (2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

  (二)比和分数、除法的联系

  出示:a∶b=( )( )=( )÷( )(b≠0)

  1.先填空,再说说这样填的根据是什么?

  2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

  3.练一练:

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。( )

  (2)填空:( )( )=( )÷( )=( )∶( )(填好后展示学生不同的结果。)

  (三)比例的知识

  1.什么是比例?

  2.比和比例有什么关系?(小组讨论后交流)

  3.比例的基本性质是什么?

  4.比例的基本性质有什么作用?怎样解比例?

  5.练一练:完成教科书p94“练习与实践”

  (1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

  估计后再算一算,来验证估计。

  (2)完成第4题:解比例,做好后选两题验算一下。

  (四)完成教科书p95“练习与实践”

  (1)完成第5题:先学生独立做最后交流第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的93100。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

  (2)完成第6题:第一小题让学生独立得出:深色与浅色地砖铺地面积的比是20∶40,化简得1∶2。

  第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

  (五)评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  习题精编

  一、对号入座。

  1.( )÷10=0.6=( )%=( ):( )=

  2.把:化成最简单的比是( );千克:400克的比值是( )。

  3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。

  4.一杯400克的盐水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。

  5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )

  6.如果A×=B×,那么A:B=( ):( ),当A=0.8时,B=( )

《比例》教学设计5

  本周教学内容为正反比例以及比例的运用。这部分内容是本册教学的重点和难点。

  一、教学内容以及讲义的设计调整。

  在前几周教学基础上,本周课堂讨论环节有所调整。之前,每次的题单设计取消,一是为了节省课堂时间,提升课堂效率;二是同步练习中的探究交流习题设计难度适中,便于学生自学指导。

  实际进行了几次教学尝试,课堂时间缩短了。

  二、紧扣概念,理解正反比例的含义。

  除了结合现实的实例外,教学中注意强化概念的理解和运用。课堂上在理解的基础上,增加记忆环节。让学生人人熟识概念,逐个讲解概念。通过讲述再次巩固概念,扎实掌握。

  三、抓关键点,理清解题思路。

  比例的应用,利用正反比例解决实际问题,关键点是:先找不变量。找准不变量,再确定属于什么比例。根据比例来确定解题方法。在教学中和练习中不断强调,怎样找不变量,学生做题准确率较高。

  四、尝试组建一对一辅导模式。

  数学学困生占二成,之前的辅导难度较大,一时间不能保证;二精力顾不过来;三师生比较疲惫,效果难以保证。从上周末开始让学生自己挑选师傅和辅导徒弟,从本周开始启动结对辅导。运行一周,目前效果良好。学困生的作业上交率明显提升,辅导师傅积极性高,辅导跟进到位,今后继续坚持,不断调整。

  以上反思,将继续扬长避短,不断完善。

《比例》教学设计6

  【教学内容】

  正比例

  【教学目标】

  使学生理解正比例的意义,会正确判断成正比例的量。

  【重点难点】

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。

  【教学准备】

  投影仪。

  【复习导入】

  1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率?

  板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  【新课讲授】

  1. 教学例1。

  教师用投影仪出示例1的图和表格。

  学生观察上表并讨论问题。

  (1)铅笔的总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。

  ②数量增加,总价也增加;数量降低,总价也减少。

  ③铅笔的总价和数量的比值总是一定的,即单价一定。

  教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

  教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  3.归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三:两个量的比值一定。

  4.用字母表示正比例的关系。

  教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

  5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  【课堂作业】

  完成教材第46页的“做一做”(1)~(3)。

  答案:

  (1) 。

  (2)比值表示每小时行驶多少km。

  (3)成正比例。理由:路程随着时间的变化而变化。

  ①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。

  【课堂小结】

  通过这节课的学习,你有什么收获?

  【课后作业】

  完成练习册中本课时的练习。

《比例》教学设计7

  第二课时

  教学内容:

  P42

  教学目的:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:

  引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

  教学难点:

  利用反比例的意义,正确判断两个量是否成反比例。

  教学过程:

  一、复习铺垫

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0。80元,1本;1。60元,2本;3。20元,4本;4。80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。

  2、教学P42例3。

  (1)引导学生观察上表内数据,然后回答下面问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、水的高度是否随着底面积的变化而变化?怎样变化的?

  C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

  D、这个积表示什么?写出表示它们之间的数量关系式

  (2)从中你发现了什么?这与复习题相比有什么不同?

  A、学生讨论交流。

  B、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

  三、巩固练习

  1、想一想:成反比例的量应具备什么条件?

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  四、全课小节

  这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

  五、课堂练习

  P45~46练习七第6~11题。

《比例》教学设计8

  教学目标:

  1、掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

  2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  正确分析题中的比例关系,列出方程。

  教学过程:

  一、导入新课。(课件出示)

  1、判断下面每题中的两种量成什么比例?

  (1)速度一定,路程和时间.

  (2)路程一定,速度和时间.

  (3)单价一定,总价和数量.

  (4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

  (5)全校学生做操,每行站的人数和站的行数.

  2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

  (2)张大妈家上个月用了5吨水,水费是10元。照这样计算,李奶奶家用了10吨水,水费是20元。

  我们已经学习了比例,比例的基本性质,正比例,反比例,今天这节课我们就运用比例的知识来解决实际问题。板书课题:用比例解决问题。

  二、揭示目标:

  1、进一步熟练地判断成正、反比例的量。

  2、学会用比例知识解答比较容易的应用题

  三、探究新知。

  例5:张大妈家上个月用了8吨水,水费是12.8元。照这样计算,李奶奶家用了10吨水,水费是多少元?

  自学指导一:

  1、理解题意,用以前学过的方法解答。

  2、题中有哪两种量?它们成什么比例关系?并说出理由。

  3、根据这样的比例关系,设李奶奶家上个月的水费是x元钱。你能列出等式吗?

  4、解比例,检验,作答。

  小结:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  解:设李奶奶家上个月的水费是χ元。

  8χ= 12.8×10

  χ=128÷8

  χ= 16

  答:李奶奶家上个月的水费是16元。

  检验1:小明买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  例6:一批书,如果每包20本,要捆18包,如果每包30本,要捆多少包?

  自学指导二:

  1、题中有哪两种量?它们成什么比例关系?并说出理由。

  2、根据这样的比例关系,设要捆x包。你能列出等式吗?

  3解比例,检验,作答。

  检验2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?

  交流总结:解答用正、反比例解的应用题的步骤:

  1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

  2、设未知数X,注上单位名称。

  3、根据正、反比例的意义列出比例式。

  4、解比例。

  5、检验、作答。

  四.巩固延伸:

  1、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?

  2、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

  3、500千克的海水中含盐25千克,120吨的海水含盐几吨?

  课堂小结。

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

  课堂作业。

  教科书P62练习九第3、7题。

  板书设计:

  用比例解决问题

  1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

  2、设未知数X,注上单位名称。

  3、根据正、反比例的意义列出比例式。

  4、解比例。

  5、检验、作答。

《比例》教学设计9

  教学目标:

  1、理解比例尺的概念,能正确、熟练地进行求比例尺计算。

  2、掌握根据比例尺求图上的距离或实际距离的方法。

  3、培养学生对知识的灵活运用能力,从中感悟到比例尺在实际生活中的重要性。

  教学重点:根据比例尺的意义求图上距离或实际距离

  教学难点:设未知数时单位的正确使用教学准备:多媒体课件1套,学具图若干张。

  教学过程:

  一、创设情境,揭示课题

  1、创设情境:播放歌曲《春天在哪里》,教师在音乐中朗诵描写奏的诗歌,音乐停,师问:你感受到了什么?有什么想法?(感受到春的气息,想去旅游)

  2、揭示课题:我们到一个陌生的地方旅游,首先要做什么呢?(找地图,了解城市情况)从地图上可以获取哪些信息(比例尺、图距、实距、方向)师:比例尺的计算方法我们已经学过了,今天我们就来学习比例尺在生活中的运用(板书课题:比例尺的应用)

  二、自主探索

  1、谈话:刚才同学们说了那么多想去的地方,老师想带你们到南京玩一玩,你想吗?(想)

  2、出示下面地图,思考从图上你能获得哪些信息。

  3、学生汇报:从图上可以看到想去的地方的方位,比例尺是多少,可以看出居住地及旅游的线路

  4、学习求实际距离的方法。假设我们到南京旅游,住在金陵饭店,想去南京博物馆参观,你能计算出从金陵饭店到南京博物馆的距离吗?试试看。

  (1)学生讨论计算方法,然后小组代表发言、集体交流。(要求实际距离可以根据比例尺的意义用解比例尺的方法做,也可以用其它公式做)

  (2)学生试做,并指名板演。

  (3)集体订正,(采用不同方法解答,说一说每一种方法思路及注意点)

  5、学习求图上距离的方法

  (1)出示:已知南京博物馆长600米、宽300米,现在做成比例尺是1:10000的平面图,你能求出南京博物馆在图上的长和宽各是多少厘米吗?

  (2)学生讨论解决方法,然后小组代表发言,集体交流。(可以根据比例尺的意义用比例的方法解答,也可以用公式图上距离=实际距离比例尺解答)

  (3)学生试做并板演。

  (4)集体订正,说一说,每种方法的思路及注意点。

  6、学生看书3738页,提出不懂的问题,集体解决。

  三、反馈提高

  1、学校的操场长300米、宽100米,要把平面图给制在作业本上,你认为选用哪个比例尺比较合适?(1)1:1000 (2)1:20xx(3)1:5000 (4)1:10000

  选第(3)个最合适,让学生说明原因

  2、量一量下图中小明家到学校公园、商场的距离各是多少厘米,然后算一算小明家到学校、公园、商场的实际距离各是多少米?指名板演,并说一说列式的依据及解题思路。

  3、根据条件绘制金山镇镇区平面图(1)金石路在繁荣路和开发路之间并与两条路平行,距繁荣路300米(在图上画出金石路)(2)金山小学在金中路东侧,在开发路北100米处,(标出金山小学位置)

  四、小结:今天你学习了什么内容?有哪些收获?

  五、作业:测量出学校的实际长和宽,然后选用适当的比例尺一出学校平面图。

《比例》教学设计10

  教学过程:

  一、导人新课

  教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)

  二、新课

  1、自学解比例。

  (1)学生自学教材35页的解比例。

  (2)学生交流解比例的意义。

  (3)教师归纳:(出示课件)

  我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  出示例2。

  (1) 学生读题,理解题目里的条件和问题。

  (2) 学生试着解答此题,一名学生演板。

  (3) 师生共评。

  (4) 归纳用比例解应用题的方法:

  A. 设出题目中要求的未知量为x;

  B. 根据比例的意义列出比例;

  C. 运用比例的基本性质解比例;

  D. 检查、写答语。

  (5)试一试:完成练习六第8题。

  3、自学例3。

  (1)学生独立把例3补充完整。

  (2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)

  教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。

  从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  4、总结解比例的过程。

  提问:

  (1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  (2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  (3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  5、完成第35页的做一做。

  学生独立解答,订正时,让学生说说是怎么做的。

  三、巩固练习

  做练习六的第7、9、10题。

  四、学有余力的学生做第12*、13*题。

  傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:

  3:8=15:40 40:15=8:3

  3:15=8:40 40:8=15:3

  如果把3、40作为内项,有下面这些比例式:

  15:3=40:8 8:40=3:15

  15:40=3:8 8:3=40:15

  可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。

《比例》教学设计11

  教学内容:

  人教版课标教材六年级下册第59—60页 例5、例6。

  教学目的:

  1、让学生掌握用正、反比例的方法解决问题。

  2、使学生体验由算术解法向比例解法的思维转化过程。

  3、形成解题多样化技能。

  教学重难点: 重点:学会用正反比例方法解决问题。

  难点:在具体情境中区别用何种比例解决问题。

  教学过程:

  一、 复习

  师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

  (出示题目)

  1、a×b=c(a、b、c均不等于0)

  当a一定时,b和c成什么比例?

  当b一定时,a和c成什么比例?

  当c一定时,a和b成什么比例?

  2、速度×()=路程

  工作总量÷( )=工作时间

  ( )×数量=总价

  总本数÷( )=每包本数

  每袋重量×( )=总重量

  师:这节课,我们一起来学习用解决问题。

  二、 新授

  1、出示例5

  ① 学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。

  ② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

  水费:吨数=单价

  ③ 学生述说,教师板演用正比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  (2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

  (3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

  小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

  2、出示例6(学生自己解答)

  ① 抓住不变的东西----总的本数判断成反比例关系

  ② 建立关系式:每包本数×包数=总数

  ③ 学生述说,教师板演用反比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

  (2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

  (3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

  3、深化练习:

  一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

  三、全课小结

《比例》教学设计12

  教学内容:

  教科书第40页的例3,完成随后的练一练和练习九的第3—7题。

  教学目标:

  1、理解比例的意义。

  2、能根据比例的意义,正确判断两个比能否组成比例。

  3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  教学重点:

  理解比例的意义,能正确判断两个比能否组成比例。

  教学难点:

  在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神。

  教学准备:

  两张照片。

  预习作业:

  1、预习课本第40页例3,

  2、分别写出每张照片长和宽的比,并比较这两个比的关系,知道什么叫做比例。

  3、在课本上完成第40页练一练。

  教学过程:

  一、预习效果检测

  1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?

  2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?希望这些知识能对你们今天学习的'新知识有帮助。

  3、什么叫做比例?

  二、合作探究

  1、认识比例

  (1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。

  (2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)

  (3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6

  数学中规定,像这样的式子就叫做比例。(板书:比例)

  (4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)

  (5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  2、学以致用

  (1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)

  (2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗?

  学生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。

  (3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?

  3、交流“练一练”的完成情况。

  三、当堂达标检测

  1、做练习九第3题。

  先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。

  2、做练习九第4题

  独立审题,说说解题步骤,在独立完成。同时找两个同学板演。

  3、做练习九第7题

  (1)弄懂什么是“相对应的两个量的比”。如240米是4分钟走的路程,所以240米与4分钟是相对应的两个量。

  (2)分组完成,同时四人板书,再讲评。

  完成后反馈、引导学生进行汇报交流,及时修正自己的答案。

  提出疑问,总结全课。

《比例》教学设计13

  【教材分析】

  本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。

  【教学目标】

  1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;

  2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;

  3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。

  【教学重点】掌握反比例的意义。

  【教学难点】有条理地思考、判断成反比例的量。

  【教学准备】多媒体课件

  【教学过程】

  一、联系生活,导入新课

  1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢?

  (结合回答板书:相关联、比值一定、y/x=k<一定>)

  2、判断下表中的两种量是否成正比例,为什么?

  表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。

  表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。

  表3:不成正比例。数量和单价的比值不是一定的。

  二、自主合作,探究发现

  1、设疑引入(购买笔记本问题)

  (1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。

  (2)四人小组合作研究:

  1、观察表格中的两个量有什么变化?

  2、这种变化有什么规律?

  3、这种规律与成正比例的量的规律有什么不同?

  (3)全班交流。

  1、观察表格中的两个量有什么变化?

  单价变化(扩大),数量也随之变化(缩小)

  2、这种变化有什么规律?

  这两个量的乘积总是一定的。

  板书:单价×数量=总价(一定)

  指出:都是用60元购买笔记本

  3、这种规律与成正比例的量的规律有什么不同?

  ①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。

  ②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。

  (4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?

  请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。

  (5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)

  单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。

  这就是我们今天要认识的成反比例的量。(揭示课题)

  2、试一试

  师:我们继续来学习反比例,请看大屏幕:

  (1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。

  然后指名口答,全班校对。

  (2)同桌合作讨论(出示要求)

  算一算:相对应的两个数的乘积各是多少?

  想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?

  说一说:每天运的吨数和需要的天数成反比例吗?为什么?

  (3)全班交流。

  算一算:相对应的两个数的乘积各是多少?

  (乘积都是72)

  想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?

  (这个乘积表示一共运的水泥吨数,每天运的吨数×天数=总吨数(一定)板书)

  说一说:每天运的吨数和需要的天数成反比例吗?为什么?

  (略)

  3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)

  4、用字母式子表示反比例的意义。

  教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?

  根据学生回答,教师板书:x×y=k(一定)

  三、巩固应用,深化发展

  1、完成“练一练”

  让学生判断每袋糖果的粒数和装的袋数是否成反比例。

  (1)出示题目和要求

  (2)把自己的想法和同桌互相说一说

  (3)再全班交流、评议。

  2、根据情况选择完成练习十三第6题

  出示题目,学生独立思考后依次交流3个问题

  3、根据情况选择完成练习十三第7题

  (1)出示题目

  (2)学生独立思考

  (3)全班交流、评议。

  4、判断下面每题中的两个量,哪些成反比例?

  (1)用同样多的钱购买不同的笔记本的单价和数量。

  (2)一个人的年龄与体重。

  (3)长方形的面积一定,长方形的长与宽。

  (4)长方形的周长一定,长方形的长与宽。

  (5)X和Y是两种相关联的量。(机动)

  X×Y=5 5×X=Y

  四、全课总结,拓展延伸

  今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。

《比例》教学设计14

  教学内容:

  九年义务教育六年制小学数学第十二册P63——64

  教学目标:

  1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

  2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

  3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

  教学重点:

  能认识正比例关系的图像。

  教学难点:

  利用正比例关系的图像解决实际问题。

  设计理念:

  数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题

  教学步骤教师活动学生活动

  一、复习激趣1、判断下面两种量能否成正比例,并说明理由。

  ◎数量一定,总价和单价

  ◎和一定,一个加数和另一个加数

  ◎比值一定,比的前项和后项

  2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

  学生口答

  想象猜测

  二、探究新知1、出示例1的表格(略)

  根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

  你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

  2、学生尝试画出正比例的图像

  3、展示、纠错

  每个点都应该表示路程和时间的一组对应数值。

  4、回答例2图像下面的问题,重点弄清:

  (1)说出每个点表示的含义。

  (2)为什么所描的点在一条直线上?

  (3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

  借助直观的图像理解两种量同时扩大或缩小的变化规律。

  学生到黑板上示范

  互相评价纠错

  学生讨论

  说说是怎样想的

  三、巩固延伸

  1、完成练一练

  小玲打字的个数和所用的时间成正比例吗?为什么?

  根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

  估计小玲5分钟打了多少个字?打750个字要多少分钟?

  2、练习十三第4题

  先看一看、想一想,再组织讨论和交流。

  要求学生说出估计的思考过程。

  3、练习十三第5题

  先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

  组织讨论和交流

  4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

  根据表中的数据,描出所对应的点,再把它们按顺序连起来。

  同桌之间相互提出问题并解答。

  独立完成,集体评讲

  想一想,说一说

  画一画,议一议

  学生设计,交换检查并相互评价

  四、评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

《比例》教学设计15

  教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

  教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

  教学目标

  1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

  2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

  3.能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

  难点:运用比例的知识解决一些简单的实际问题。

  课前准备课件。

  教学流程设计意图

  一、比的知识:

  1.举例说说什么是比?什么是比的基本性质?

  2.说一说用比的知识可以解决哪些实际问题。

  3.完成教科书第83页“练习与实践”。

  (1)完成第一题:学生独立数出班上男女生人数,再完成此题。

  (2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

  二、比和分数、除法的联系

  出示:a∶b=()÷()=(b≠0)

  1.先填空,再说说这样填的根据是什么?

  2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

  3.练一练:

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

  (2)填空:

  =()÷()=()∶()

  (填好后展示学生不同的结果。)

  三、比例的知识

  1.什么是比例?

  2.比和比例有什么关系?(小组讨论后交流)

  3.比例的基本性质是什么?

  4.比例的基本性质有什么作用?怎样解比例?

  5.练一练:完成教材第83页的“练习与实践”。

  (1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

  估计后再算一算,来验证估计。

  (2)完成第3题:解比例,做好后选两题验算一下。

  四、完成教材第84页“练习与实践”。

  (1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

  (2)完成第5题:

  第一小题让学生独立得出:深色与浅色地砖铺地面积的

  比是20∶40,化简得1∶2。

  第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

  (3)完成第6题。

  五、评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

  沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

  对比和比例进行比较,强化理解,进一步优化知识结构。

  复习解比例。

  应用比例分配知识解决实际问题。