平行线的判定教学设计范文

阿林

  一、教材分析

  1.教材的地位与作用

  平行线的判定(1)这节课是继“同位角、内错角、同旁内角”即三线八角内容之后学习的又一个重要知识,它是继续学习平行线其他判定方法的奠基知识,更是今后学习与平行线有关的几何知识的基础。因此这节内容在七~九年级这一学段的数学知识中具有很重要的地位。

  2.教材的重点、难点

  平行线的判定方法“同位角相等两直线平行”是平行线其它判定的重要依据,它是这节课的教学重点。

  由于例1判定两直线平行时需将已知条件作适当的转化,说理过程要求有条理地表示,这在学生学习“证明”之前,学生这方面的能力还比较薄弱,所以例1为本节的教学难点。

  二、教学目标分析

  1.知识目标:理解平行线的判定方法,同位角相等两直线平行,并学会运用这一判定方法进行简单的几何推理:

  2.能力目标:通过“同位角相等、两直线平行”这一判定方法的发现过程的教学,培养学生动手实验操作能力,归纳分析能力。通过这一判定方法的运用进一步培养学生的逻辑思维和推理能力。

  3.情感目标:体会用实验的方法得出几何性质(规律)的.重要性与合理性。进一步培养学生积极参与主动探索的良好学习习惯和思维品质。

  三、学法指导

  (1)乐学,在整个学习过程中,让学生保持强烈的好奇心和求知欲,不断强化他们的创新意识,全身心地投入学习中去,成为学习的主人。

  (2)学会:通过新知的学习,让学生学会新知在新的情境下如何应用,从而逐步完善其认知结构。

  (3)会学:通过学生的亲身参与,更进一步体会到动手实践自主探索是学习数学其它知识的重要方式。

  四、教法分析与说明

  以皮划挺静水项目比赛的航向与航线引发的问题为背景贯穿整节课,采用“新课引入—探究新知—新知巩固—运用新知解决实际问题—归纳小结——延伸提高”为主线的教学程序。遵循学生从已知到未知的认知规律,使学生感到新旧知识之间的密切联系。坚持学生为主体,教师为指导,让学生在教师的指导下自始至终处于积极思维,主动探究的学习状态,同时借助多媒体进行演示,以增加教学的直观性。在例题与练习的选择上注重有效性与层次性,积极探索培养思维的严密性和表达的规范性。

  五、教学过程分析与说明

  (一)、新课的引入

  选用一段大家都知道,但又不是很熟悉的皮划艇视频引入,(边播放一段皮划艇比赛的视频,边提问)以四个问题为载体引入新课。

  问1:这是一项什么体育运动?

  问2:你观察到每只皮艇的航线有怎样的位置关系?

  问3:你观察到皮艇每次过白色标志线或冲向终点线的时候,皮划艇的航线与标志线或终点线有什么位置关系?

  问4:为什么保持垂直就可以保证平行了呢?

  激烈的皮划艇比赛视频以及老师对皮划艇比赛的介绍一下子就吸引了学生的眼球,通过设置问题4的悬念,激发了学生的求知欲,引入了新课。并让学生体会到了数学来源生活,生活中处处有数学,我们学习的是有用的数学。从而营造了良好的课堂氛围。

  (二)探求新知

  继续皮划艇的问题:已知同伴的航线,再画出自己的航线,根据前面了解到的信息学生知道就是过直线外一点画已知直线的平行线的问题。让学生带着解决实际问题的好奇心去探求新知,从而激发学生的学习兴趣与学习热情。并通过操作,观察,归纳使学生的认识从情感阶段上升到理性阶段。

  (三)巩固新知首先设计两个提问

  (1)现在要判定两条直线平行,关键要找什么条件成立?(生答同位角相等) ;

  (2)那么同位角在怎样的几何图形中才会出现?(生答两条直线被第三条直线所截,即“三线八角”) 。目的是讨论质疑,突出重点,归纳出判定两直线平行的关键步骤。

  再设计了一组“要说明AB‖CD,需找哪两个角相等”的练习。第一个图形是最简单的三线八角;第二个图形是三角形被一条直线所截,包含了多个三线八角,需要学生有选择地找需要的三线八角;第三个图形是一个实物图,首先要从中抽象出数学几何图形,再有选择地找三线八角,练习的选择上难度与思维都是层层递进。在学生找出两个角相等后,并强调询问是哪两条直线被第三条直线所截而形成的同位角,并利用多媒体闪烁其中的三线八角。目的是强化判定方法的大前提及提设条件,以突出本节教学内容的重点。判定两直线平行的关键步骤是找到需说明平行的两条直线被第三条直线所截形成的同位角.。

  第三步设计了一个手指游戏,“利用你的拇指与食指,在同一平面内,你能根据今天学过的判定方法构造平行线吗? ”因为根据八年级学生的生理与心理特点,此时学生开始有些疲劳,注意力开始有些分散,所以设计一个游戏的练习,让学生在玩中学,再次形象地运用了平行线的判定方法,达到事半功倍的效果。

  第四步在总结出平行线判定方法的数学符号语言后,再进行范例的讲解与范例的变式练习,有了前面的铺垫,学生形成解题思路已不成问题,先请一个同学代表叙述说理过程,再请其也同学补充完整,这样逐步培养学生说理的条理性与层次性。以上教学,层层深入,始终让学生参与整个问题的“发生”和“解决”过程,培养学生探索问题的能力,渗透辅导学生会学,巧妙突破本节课难点。

  根据学生的认知特点,通过自主探索、合作交流,教师示范,练习反馈,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,巩固了新知识,并充分发挥了学生学习的积极性和主动性,培养了学生良好的学习习惯。

  (四)运用新知解决实际问题

  学以致用,运用所学的知识来解决两个实际问题,通过这两个实际问题的解决,渗透如何把实际问题转化为数学问题的方法,并让学生体会到数学来源于生活,又应用于生活的用数学的思想。特别是课前提出的问题:为什么每只皮划艇都沿着垂直于终点线的方向行驶,就能保证航线互相平行?从该问题的解决中既巩固了所学的知识,又得出了平行线的另一中判定方法(在同一平面内垂直于同一条直线的两条直线互相平行),可谓一举两得。通过这一环节的设计,给学生的认知上画上了一个完美的句号。

  (五)归纳小结

  为了使学生对所学知识有一个完整而深刻的印象,通过同桌之间相互说一说,进而师生一起归纳总结。目的是训练学生归纳概括知识的能力,并使学生在归纳过程中使知识系统化、条理化。

  (六)延伸提高,挑战自我

  为了让不同的学生在课堂上得到不同的发展,好生吃得饱,我又设计了一个关于方位的实际应用题,在该题中主要是没有出现要说明平行的两条直线被第三条直线所截而形成的同位角,所以要添线构造三线八角,并且在说明同位角相等的过程中,运用了对顶角相等,三角形三内角和为180度等性质,既是思维层次的一次提升,又是前面所学的几何知识的一次综合应用。

  (七)布置作业

  作业的布置体现整体和局部相结合,注重分层训练,一是必做题,作业本及社会实践作业,让所有学生对本课所学知识加深理解,及时巩固。二是选做题,即延伸提高题,让学有余力的同学完成,可以满足他们学习的愿望,发展他们的数学才能,也符合面向全体、因材施教原则。