《一次函数》教案
一、情境导入
课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.
师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)
二、探究新知
函数的相关概念.
(1)课件出示教材第76页“做一做”第1题.
师:层数n和物体总数y之间是什么关系?
引导学生得出:只要给定层数,就能求出物体总数.
(2)课件出示教材第76页“做一做”第2题.
师:在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.
表示函数的方法一般有:列表法、关系式法和图象法.
对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.
理解函数概念时应注意:
(1)在某一变化过程中有两个变量x与y.
(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.
(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.
师:上述问题中,自变量能取哪些值?
指出要根据实际问题确定自变量的取值范围.
《第四章一次函数》课后测试
1、某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟, 那么他们从B地返回学校用的时间是( )
A、45.2分钟 B、48分钟 C、46分钟 D、33分钟
《第四章一次函数》同步测试
1.一辆汽车和一辆摩托车分别从A,B两地去同一城市(与A,B两地在同一直线上),它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1 h;②A,B两地的路程为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1小时后与摩托车相遇,此时距B地40千米;⑤相遇前摩托车的速度比汽车的速度快.其中正确结论的个数是( )