《圆柱的体积》教案

阿林

《圆柱的体积》教案

  最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。

  ……

  师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?

  生:(绝大部分学生举起了手)底面积乘高。

  师:那你们是怎样理解这个计算方法的呢?

  生1:我是从书上看到的。

  (举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)

  生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!

  师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。

  生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?

  (教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)

  师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)

  生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?

  师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

  生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。

  师:了不起的一种想法!(师情不自禁的鼓起了掌。)

  生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。

  师:你真会思考问题!

  生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的.体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。

  生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!

  师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!

  ……

  整节课不时响起孩子们、听课老师们热烈的掌声。

  过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。

  现从“对话”的视角来赏析这则精彩的片段。

  一、“对话”唤发出学习热情。

  《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。

  二、“对话”迸发出智慧的火花

  “水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。

  三、“对话”赢得心灵的敞亮和沟通

  “真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。

  数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!