高中高一数学的教案

莉落

高中高一数学的教案1

  教材分析

  圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

  教学目标

  1.知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

  2.过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

  3.情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

  教学重点难点

  以及措施

  教学重点:圆的标准方程理解及运用

  教学难点:根据不同条件,利用待定系数求圆的标准方程。

  根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

  学习者分析

  高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

  教法设计

  问题情境引入法启发式教学法讲授法

  学法指导

  自主学习法讨论交流法练习巩固法

  教学准备

  ppt课件导学案

  教学环节

  教学内容

  教师活动

  学生活动

  设计意图

  情景引入

  回顾复习

  (2分钟)

  1.观赏生活中有关圆的图片

  2.回顾复习圆的定义,并观看圆的生成flash动画。

  提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗

  教师创设情景,引领学生感受圆。

  教师提出问题。引导学生思考,引出本节主旨。

  学生观赏圆的图片和动画,思考如何表示圆的方程。

  生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用

  自主学习

  (5分钟)

  1.介绍动点轨迹方程的求解步骤:

  (1)建系:在图形中建立适当的坐标系;

  (2)设点:用有序实数对(x,y)表示曲线上任意一点M的坐标;

  (3)列式:用坐标表示条件P(M)的方程;

  (4)化简:对P(M)方程化简到最简形式;

  2.学生自主学习圆的方程推导,并完成相应学案内容,

  教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程

  自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。

  培养学生自主学习,获取知识的能力

  合作探究(10分钟)

  1.根据圆的标准方程说明确定圆的方程的条件有哪些

  2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的`判断方法:

  (1)点在圆上

  (2)点在圆外

  (3)点在圆内

  教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。

高中高一数学的教案2

  一、教学目标:

  1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。

  2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、

  概括等逻辑思维能力。

  3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。

  二、重点:等比数列的性质及其应用。

  难点:等比数列的性质应用。

  三、教学过程。

  同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。

  数列名称等差数列等比数列

  定义一个数列,若从第二项起每一项减去前一项之差都是同一个常数,则这个数列是等差数列。一个数列,若从第二项起每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。

  定义表达式an-an-1=d(n≥2)

  (q≠0)

  通项公式证明过程及方法

  an-an-1=d;an-1-an-2=d,

  …a2-a1=d

  an-an-1+an-1-an-2+…+a2-a1=(n-1)d

  an=a1+(n-1)__d

  累加法;…….

  an=a1qn-1

  累乘法

  通项公式an=a1+(n-1)__dan=a1qn-1

  多媒体投影(总结规律)

  数列名称等差数列 等比数列

  定义等比数列用“比”代替了等差数列中的“差”

  定义

  表

  达式an-an-1=d(n≥2)

  通项公式证明

  迭加法迭乘法

  通项公式

  加-乘

  乘—乘方

  通过观察,同学们发现:

  等差数列中的减法、加法、乘法,

  等比数列中升级为除法、乘法、乘方.

  四、探究活动。

  探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。

  练习1在等差数列{an}中,a2=-2,d=2,求a4=_____..(用一个公式计算)解:a4=a2+(n-2)d=-2+(4-2)__2=2

  等差数列的性质1:在等差数列{an}中,an=am+(n-m)d.

  猜想等比数列的性质1若{an}是公比为q的等比数列,则an=am__qn-m

  性质证明右边=am__qn-m=a1qm-1qn-m=a1qn-1=an=左边

  应用在等比数列{an}中,a2=-2,q=2,求a4=_____.解:a4=a2q4-2=-2__22=-8

  探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。

  练习2在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为.解:a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=2a5+2a5+a5=5a5=450a5=90a2+a8=2×90=180

  等差数列的性质2:在等差数列{an}中,若m+n=p+q,则am+an=ap+aq特别的,当m=n时,2an=ap+aq

  猜想等比数列的性质2在等比数列{an}中,若m+n=s+t则am__an=as__at特别的,当m=n时,an2=ap__aq

  性质证明右边=am__an=a1qm-1a1qn-1=a12qm+n-1=a12qs+t-1=a1qs-1a1qt-1=as__at=左边证明的方向:一般来说,由繁到简

  应用在等比数列{an}若an>0,a2a4+2a3a5+a4a6=36,则a3+a5=_____.解:a2a4+2a3a5+a4a6=a32+2a3a5+a52=(a3+a5)2=36

  由于an>0,a3+a5>0,a3+a5=6

  探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。

高中高一数学的教案3

  教学目标:

  (1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体

  问题,感受集合语言的意义和作用;

  教学重点:

  集合的基本概念与表示方法;

  教学难点:

  运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:

  一、引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

  二、新课教学

  (一)集合的有关概念

  1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这

  些东西,并且能判断一个给定的东西是否属于这个总体。

  2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简

  称集。

  3.关于集合的元素的特征

  (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

  (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

  (3)集合相等:构成两个集合的元素完全一样

  4.元素与集合的关系;

  (1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)

  5.常用数集及其记法

  非负整数集(或自然数集),记作N

  正整数集,记作N__或N+;

  整数集,记作Z

  有理数集,记作Q

  实数集,记作R

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1)列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},;

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

  具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},;

  强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  三、归纳小结

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系

  教材分析:类比实数的大小关系引入集合的包含与相等关系