新人教版初二数学二次根式教案

李盛

  一、学习目标:

  1.多项式除以单项式的运算法则及其应用.

  2.多项式除以单项式的运算算理.

  二、重点难点:

  重点:多项式除以单项式的运算法则及其应用

  难点:探索多项式与单项式相除的运算法则的过程

  三、合作学习:

  (一)回顾单项式除以单项式法则

  (二)学生动手,探究新课

  1.计算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提问:①说说你是怎样计算的.②还有什么发现吗?

  (三) 总结法则

  1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

  2.本质:把多项式除以单项式转化成______________

  四、精讲精练

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  随堂练习:教科书练习

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

  B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

  C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

  E、多项式除以单项式法则

  第三十四学时:14.2.1平方差公式

  一、学习目标:

  1.经历探索平方差公式的过程.

  2.会推导平方差公式,并能运用公式进行简单的运算.

  二、重点难点

  重点:平方差公式的推导和应用

  难点:理解平方差公式的结构特征,灵活应用平方差公式.

  三、合作学习

  你能用简便方法计算下列各题吗?

  (1)20xx×1999 (2)998×1002

  导入新课:计算下列多项式的积.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精讲精练

  例1:运用平方差公式计算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:计算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  随堂练习