教学目标:
1、会利用乘法分配律、乘法结合律对含有字母的式子进行化简。
2、会把具体的数代入含有字母的式子求它的值。
3、养成对含有字母的式子先进行化简再求值的'习惯。
教学重点:
利用运算定律,对含有字母的式子化简求值。
教学难点:
对含有字母的式子进行化简后,把具体数代入含有字母的式子求值。
教学准备:
教学课件
教学过程:
一、情景导入
1、师:小胖和小丁丁到书店里购买练习本,小胖买了3本,小丁丁买了2本,练习本每本x元,他们一共要付多少元?(课件演示)
2、生:3x+2x元。
3、师:那么我们这样的式子是不是可以简化一点记录呢。这就是今天我们要学习的内容:化简与求值
板书
二、探究新知
(一)用运算定律化简
1、师:我们学过各种各样的算式,例如17+5,29-2,217+2等等,我们也学习了用字母表示算式中的数,从而得到了像m+5,29-n,2a+2等等含有字母的式子,含有字母的式子有时可以化简;当式子中字母的值给定时,我们还可以求出式子的值。
2、师:让我们通过课件来帮助我们一起来理解。
3、小结
这里化简过程就是利用我们的语言优先,3个x加上2个x就是5个x。
4、师:小胖要比小丁丁多付多少元?
5、请学生模仿尝试练习。
6、小结:我们可以运用所学过的运算定律对含有字母的式子进行化简。
7、练习:化简下列各式
9a+4a 8k-7k 6m-m 3x+2x+6 8x-4x-3 3x3 学生小组合作尝试解决。
汇报交流。
其中最后两题注意不能把3x+2x+6=11x,而是5x+6。
请学生说一说3x3是怎样化简的。
(二)求值
当x=17时,求14x+26x的值。
1、学生试做。
(1)14x+26x
(2)14x+26x =1417+2617 =40x =238+442 =4017 =680 =680
2、讨论,你会选择哪种方法?为什么?
3、师指导格式。
解:当x=17时,
14x+26x =40x =4017 =680
4、小结
在求值的时候,能够先把算式化简的先化简,然后代入数字进行计算。
5、练习
(1)当a=3,b=12时,求9a-2b的值。
(2)当b=5时,求9b+3b-6b的值。
三、巩固练习
1、化简
8a-a+10 5x4 5m+5m-5n+5n 4x-(2x+1)
6x5+7 92x-3x 2、求下列字母式子的值
当x=2.3时,求8x+3x-2.6的值。
当m=1.1时,求4(m+25)的值。
四、总结
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?对今天的学习评价如何?
五、课后作业
练习册配套练习