分数除法教学设计

秦风学

  分数除法教学设计1

  教学目标:

  1、能根据分数乘法应用题的数量关系,理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

  2、提高学生分析问题的能力。

  3、培养学生养成良好的审题习惯。

  教学重难点:

  理解、掌握分数除法应用题的数量关系,并用方程或除法正确列式解答。

  教学准备:

  电教媒体

  教学过程:

  一、教学准备

  1、说下列各句中单位“1”的量及想到的数量关系式。

  (1)我的身高是爸爸的

  (2)小华的邮票张数比小芳多

  (3)十月份的电费比九月份减少

  (4)小瓶里的果汁是大瓶的

  小结:单位“1”的量×对应分率=对应量

  2、请学生由(4)编题:编一道一步计算的分数乘法题。

  师根据学生回答板书:一大瓶果汁有900毫升,一小瓶里的果汁是大瓶的(),一小瓶里果汁有多少毫升?

  问:你认为编得对不对?为什么能确认?

  (1)学生列式解答(口答)。

  (2)为什么用900×()?

  (3)小结:(板书)一大瓶果汁数量×()=一小瓶果汁数量

  二、新授

  1、改编成例5:一小瓶里的果汁是大瓶的(),一小瓶果汁有600毫升,一大瓶里果汁有多少毫升?

  (1)读题,比较异同:

  变:条件、问题的位置变了

  不变:单位“1”的量没变,数量关系式没变。

  (2)怎么解答?生试做,汇报

  方程:解设一大瓶x毫升x=600

  算式:600÷x=600×()=600×x=900=900(毫升)

  (1)说想法

  (2)怎么检验?

  900×()=600(毫升)或600÷900=

  (3)再次比较二题的异同

  小结解题步骤:

  ①找单位“1”的量,想数量关系式

  ②看问题

  ③列式解答

  ④检验

  2、按照解题步骤完成“试一试”

  ①读题

  ②说单位“1”的量及数量关系式

  ③解答

  ④汇报

  3、按步骤解答练习十二第1题

  4、总结、揭题:

  (1)总结:求单位“1”的量是多少,可以列方程解答,也可以用对应量÷对应分率=单位“1”的量。

  (2)揭题:这就是今天学习的“分数除法的实际问题”(板书)

  三、练习

  1、完成练习十二第3题

  小结:为什么都用除法计算?(都是求单位“1”的量。)

  2、课作:练一练、练习十二第2题

  练习十二第2题改乘法题

  3、看关键句,分别编一道乘法题,一道除法题

  “黑兔只数是白兔的3/5。”

  分数除法教学设计2

  教学内容

  北师大版小学五年级数学下册第55~56页。

  教学目标:

  1、体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、、培养学生动手动脑能力,以及判断、推理能力。

  3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:体验分数除以整数的计算方法,并能正确的计算。

  教学难点:分数除以整数计算法则的推导过程。

  教学准备:长方形纸片、彩笔。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2=

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!

  (2)质疑问难,理解新知

  师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的`整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)