教师的课堂应变能力,自己比较紧张,也由于在数学课堂教学中经验不够丰富,在处理一些突发事件是不够灵活。由这一点,我得到启示,作为一个教师,必须不断研究教材,研究学生,更要研究学习过程,善于思考,找到教学的切入点,加强学生是学习的主人,这是新课标所倡导的理念,只有这样才能使学生进一步发展,让孩子成为真正的主人,才能落实教学任务。这也是我平时教学中的困惑,是我在教学中进一步需要加强之处,这也是对我的另一启示。
一、教学目标:
1、知道一次函数与正比例函数的定义.
2、理解掌握一次函数的图象的特征和相关的性质;
3、弄清一次函数与正比例函数的区别与联系.
4、掌握直线的平移法则简单应用.
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:
重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:
1、一次函数与正比例函数的定义:
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数
正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2. 一次函数与正比例函数的区别与联系:
(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx
平行的一条直线。
基础训练:
1. 写出一个图象经过点(1,- 3)的函数解析式为: 。
2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。
3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4.已知正比例函数 y =(3k-1)x,,若y随
x的增大而增大,则k是: 。
5、过点(0,2)且与直线y=3x平行的直线是: 。
6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。
7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。
8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。
四、教学反思:
教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。
课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问
题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。
从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。
人教版小学数学第四册第29页例3用除法解决问题,本课的主要教学目标是通过学习使学生初步学会解答“把一个数平均分成几份,求每份是多少”和“把一个数按照每几个一份来分,看能分成份”的除法应用题,会写单位名称。通过提供丰富的、现实的、具有探索性的学习活动,感知生活与数学的紧密联系,激发学生对数学的兴趣,逐步发展学生的数学思维能力和创新意识。教学重点是使学生初步学会解答“把一个数平均分成几份,求每份是多少”和“把一个数按照每几个一份来分,看能分成份”的除法应用题,会写单位名称。教学难点是使学生逐步养成爱动脑筋分析、解决问题的习惯。使学生在解决问题的过程中,体会两个问题的内在联系,受到辩证唯物主义观点的启蒙教育。
在课堂教学中,我觉得在这几个方面做得比较理想:
1、对教材的充分理解与把握。
新课程对教师提出了更大的挑战,它要求教师对教材有深刻的理解,理解编者的意图,充分挖掘所提供教材的有用性。要求教师恰如其分地把握教材,选择教材,利用教材,从教材出发却又不局限于教材。对教材有游刃有余的运用能力,程度地发挥教材的教学作用。
(1)力求进入生活情景。如果知识与实际相结合,知识也就活了,学生也更愿意学了。通过回忆“同学们玩游戏”的情景,让学生看主题图,在图中收集信息,提出用除法解决的问题。这是同学们生活中经常发生的,是符合现实生活的。“每组有几人?”“可以分成几组?”也就变成了他们希望解决的问题。可见联系实际能够激起他们学习的愿望,并且使学生发现生活中有许多数学问题,还能够有效地使数学课堂延伸。
(2)力求体现探究性学习。探究性学习是综合性学习的活动方式。在实际时,我是这样一步步完成的:第一步,由观察“同学们玩游戏”的情景,使学生发现问题;第二步,让学生从中找出数学信息,提出数学问题;第三步,让学生用除法独立解决“每组有几人?”“可以分成几组?”这两个问题;第四步,回顾解决问题的方法,并比较两题之间的关系,发现相同点与不同点,进而使大家能够多留心身边的数学信息和问题,并解决这些问题。
(3)根据学生的能力增加了发展题。发展题是有一定难度的,又来了3人,如何平均分为3组。进而发展学生思维,培养思维能力。
2、学方式方法的优化。
(1)注重学生的说。在课堂中,呈现了不同的说的方式,个别说、小组讨论说、跟着同学一起说,给了学生充足的时间与空间。让学生通过说展现思维过程,表达自己的想法。在说的过程中理解“把一个数平均分成几份,求每份是多少”和“把一个数按照每几个一份来分,看能分成份”的除法应用题的数量关系,掌握解决方法。在实现教学目标的同时发展了学生的表达能力、自主能力以及对不同观点的审视能力。
(2)合作学习与独立思考相结合。如在例题教学“两道题之间有什么关系?”这个问题,你是怎么想的,我采用了小组合作讨论的形式,而在做一做这题中,我让学生直接回答。小组讨论的形式给了学生更宽裕的时间,有利于学生组织更好的语言,并培养了学生的合作精神。而独立思考的形式发挥了学生学习的自主性,对于学生思维能力的培养更具优势。合作学习与独立思考相结合的思想。
一、明确每一堂课的教学目标
教学目标是教学所要达到的具体标准,教学目标的明确与否直接关系到整堂课教学的成败。因此,教师首先要有目标意识,结合教学大纲,认真研究高中数学这门课程的学科特点,洞悉章节之间的内在联系,明确该课程总的教学任务和目标,在备课之初就要设定好每一节课要达到的分目标,将每一节课的局部跟整体联系起来,让学生有融会贯通、豁然开朗之感。一般来说,分目标的确定不应只是停留在要学生掌握多少概念定理、基础知识上,更为关键的是要锻炼学生的数学思维,增强他们将数学知识应用到生活实践的能力。相对于传统的以知识传授为目标,新的目标的确定势必需要教师付出更多的努力。我们必须加强业务学习,提高自身的综合素质,才有可能做好一个合格的高中数学教师,才能谈及教学质量提升的问题。
二、进行科学合理的教学设计
在明确了每一节课的教学目标之后,就要着手进行具体的教学设计。教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划,一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程,是教育技术的组成部分。它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。它以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。因此,我们可以看到,教学设计的好坏对于教学目标的达成与否起着至关重要的作用,要想做出科学合理、有条不紊的教学设计,我们需要虚心学习同行的宝贵经验,反复修正原有的教学设计,以高标准严格要求自己,力求达到日臻完善的程度。
三、激发学生的学习热情,生动开展课堂教学
学生是学习的主人,要为自己的学习负责任,教师要做好陪伴和引导的角色。高中数学课程难度不断加大,学生的基础知识掌握稍有脱节,就有可能学得吃力,导致兴趣下降,动力不足。因此,教师在教学中要注意观察学生的反应,通过提问等方式,及时收集学生的反馈,对教学内容灵活做出适当调整。课堂上准备的习题也要难易适度,使学生能够循序渐进地完成教学目标,体验到学会的成就感,建立对本门课程的自信心。高中数学教师也要注意教学语言的锤炼,力求精确生动,可以穿插一些相关的生活趣事,生动活泼地将数学知识与生活的联系呈现在学生的面前。
四、创设愉悦宽松的教学氛围
学生是学习的主人,首先是学习需要、学习情感的主人,然后才是掌握知识的主人。长期以来,造成教学被动局面的一个重要原因就是教师忽视或没有重视去营造一种和谐愉悦的课堂教学氛围和培养学生良好的学习兴趣。传统的教学重理智控制,轻情感沟通,忽视情感因素的教育价值。而现代教学则是把师生情感的和谐与融洽作为其执意追求的一种心理环境,着力从理性与情感统一的高度来驾御和实施教学活动。心理学研究表明,适度的压力最有助于个体各方面能力的发挥,高中数学的学习也不例外。课堂任务繁重,压力过大,不仅会降低学生学习的热情,而且会大大降低学习效果。因此,教师要注意营造愉悦宽松的教学氛围。精心设计教学环节,以幽默智慧的教学语言让学生轻松掌握每一节课的精髓,做到对知识点的举一反三,做到将知识与生活实际相联。
五、建立亲切舒适的师生关系
师生关系是指教师和学生在教育、教学过程中结成的相互关系,包括彼此所处的地位、作用和相互对待的态度等。师生关系既受教育活动规律的制约,又是一定历史阶段社会关系的反映。良好的师生关系是提高学校教育质量的保证,也是社会精神文明的重要方面。新型师生关系应该是教师和学生在人格上是平等的、在交互活动中是民主的、在相处的氛围上是和谐的。师生关系是教育活动过程中最基本、最重要的关系。教师应时刻提醒自己身为学生的榜样,无论是在工作还是生活中都要以《中小学教师职业道德规范》要求自己,发自内心地热爱祖国,遵纪守法,爱岗敬业,平等尊重每一位学生,不以分数作为评价学生的标准,坚守高尚情操,知荣明耻,严于律己,以身作则,崇尚科学精神,树立终身学习理念,潜心钻研业务,勇于探索创新,不断提高专业素养和教育教学水平,努力做受学生爱戴的教师。因此,高中数学课堂教学质量的提高是一项说难也不难的任务,说它难是因为无论是钻研教学目标和内容、进行科学创新的教学设计,还是做好生动主动的课堂教学、营造愉悦宽松的教学氛围和建立和谐的师生关系,每一环都需要教师付出艰辛的努力和高尚无私的爱,实属不易。说它不难,是因为这些工作的确就是每一位教师每天都在默默做着的,只要我们忠于职守,踏实奉献,就能收获课堂教学质量的不断提高,收获桃李满天下的累累硕果。
上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一学期,我对教学工作有了如下感想:
一、认真备课,做到既备学生又备教材与备教法。
上学期我根据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思考到,认真写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮忙学生进行归纳总结。
二、增强上课技能,提高教学质量。
增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。因为应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得简单,学得愉快。注意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思考每一个层次的学生学习需求和理解潜力,让各个层次的`学生都得到提高。
三、虚心向其他老师学习,在教学上做到有疑必问。
在每个章节的学习上都用心征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的意见,改善教学工作。
四、认真批改作业、布置作业有针对性,有层次性。
作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到的效果。同时对学生的作业批改及时、认真,并分析学生的作业状况,将他们在作业过程出现的问题及时评讲,并针对反映出的状况及时改善自己的教学方法,做到有的放矢。
然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,用心向老老师学习以提高自己的教学水平。
以上几点便是我的一点心得,期望能发扬优点,克服不足,总结经验教训,为今后的教育教学工作积累经验,以便尽快地提高自己的水平。
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
《小学数学课程标准》强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”只有这样,才能激发小学生的积极性,培养小学生主动学习的良好习惯。
在低年级的数学教学的课堂上,我注重用游戏,活动、等学生感兴趣的活动,来调动学生的多种感官参与到知识的探究、形成过程。注意选择富有儿童情趣的学习材料和活动内容,激发学生的学习兴趣,获得愉快的数学学习体验。例如“左,右”教学由于一年级的学生对上下、前后的认识有着比较丰富的生活经验,大多数学生可以清楚地辨认,但不少学生对左右方位关系不太容易分清。
所以在本节课的教学设计前,我似乎觉得“左,右”的位置关系,学生在实际生活中经常接触,应该都懂了,但后来我想:学生对“左,右”的位置关系,肯定只是表面的感知,一种比较浅显的理解。因此,我精心设计了教学活动内容,先创设问题情境,“要发言的请举右手”既是对学生的常规教育,也让学生记住自己的右手。
然后让学生举一举,摸一摸,拍一拍,跳一跳,找一找,说一说,等游戏活动体验左右。在整个设计过程中,我结合学生的年龄特点和认知规律,从学生的生活实际出发,以培养学生的学习兴趣为主要教学手段,让学生在生动具体的情境中积极地参与各种数学活动,使学生对“左,右”的位置关系有了进一步的理解,学生由感性认识逐步上升到理性认识。
现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。
本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。
一、注重问题情境的创设
著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:
星期 一 二 三 四 五 六 合计
积分 +3 -2 -4 -2 +2 +4
然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。
本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。
2、教学重点、难点处的问题设计
初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?(2)自变量x的范围是什么?(3)在0 3、例题或课堂练习中的问题设计 例题教学具有及时巩固知识和灵活运用知识的双重功能,随堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k>0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k>0)的图像上,其中a0判断y1、y2、y3的大小关系。教学中我发现多数学生对问题(1)采用了直接代入计算的方法得到结果,对问题(2)显然用代入法难以得到结果,这时,我让学生小组讨论来解决。经过讨论后,学生A回答:“因为k>0时,反比例函数y随x的增大而减小,而a 4、在学习反思中的问题设计 初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在平时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格: 通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。 总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。 教材分析: 一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。 学情分析: 1.学生已学习用求根公式法解一元二次方程。 2.本课的教学对象是九年级学生,学生对事物的认 识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。 3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。 教学目标: 1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。 2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。 3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。 教学重难点: 1、重点:一元二次方程根与系数的关系。 2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。 教学过程: 板书设计: 一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。 问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗? ①二次项系数a是否为零,决定着方程是否为二次方程; ②当a≠0时,b=0,a、c异号,方程两根互为相反数; ③当a≠0时,△=b-4ac可判定根的情况; ④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。 学生学习活动评价设计: 本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。 教学反思: 1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。 2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力 3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。 4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。初中数学教学设计与反思9