小学五年级下册数学教学设计1
《折线统计图》
教学目标:
1.知识和技能:通过对比条形统计图和折线统计图,让学生认识单式折线统计图,会看折线统计图,了解折线统计图既可以表示数量的多少,又可以体现数据变化趋势的特点。
2.问题解决与数学思考:能根据统计表所给的数据绘制完成折线统计图,能根据折线统计对数据进简单地分析并能提出问题和解决问题,能根据折线统计图数据变化的趋势,对数据的变化做出合理的推测。
教学重难点:
1、认识单式折线统计图,了解折线统计图的特点及优势。,会看折线统计图,并能够根据折线统计图解决问题和提出问题。根据统计表所给的数据正确地完成折线统计图。
2、学会用折线统计图来分析问题,预测事情的发展趋势,体会统计在生活中的作用和意义。
教学方法:讨论法,讲授法,小组合作交流等。
教学准备
多媒体课件。
教学设计
(一)设疑自探
创设情境,导入新课
1.交流:同学们,你们喜欢机器人吗?下面是全国青少年机器人大赛参赛队伍统计图。(课件出示条形统计图)
2.分析统计图。思考:从这张统计图中,你了解到哪些信息?生自由发言,读懂条形统计图。
3.揭示课题。师:为了便于分析,统计图还可以这样画。出示折线统计图。(课件出示统计图)这就是今天我们要研究的内容,板书课题:折线统计图。
(二)解疑合探
1.初步感知
师:刚才,我们在条形统计图中了解的信息在这张折线统计图上都能找到吗?学生观察统计图,指名说一说。问:20_年有多少支队伍参赛?谁来指一指?生:边指边答20_年489支。追问:489在哪?生:在20_年这一列和横着的489这个数据的交点。
2.揭示课题。
师:为了便于分析,统计图还可以这样画。出示折线统计图。(课件出示统计图)这就是今天我们要研究的内容,板书课题:折线统计图。思考所有的信息都找到了,那他们为什么还要制成这样的折线统计图呢?
3.深入探究。学生观察折线统计图,独立思考教材中提出的2个问题。小组交流。全班讨论、交流:你是是怎样看出来的?怎样想的?
4.读懂图意。
谈话:看来折线统计图的用途真不小!你能看懂这个折线统计图吗?
请同学们先与同桌互相说一说,折线统计图是由哪几部分组成的,它是怎样表示数据信息的?
学生活动,教师组织全班交流。
提问:表示20_年参赛队的点在哪里?这一年有多少支参赛队?20_年呢?
5.数据分析。
谈话:你能回答下面的问题吗?自己先想一想,再和同桌说一说。
出示问题:
(1)多长时间记录一次数据的?
(2)哪一年参赛的队伍最多?哪一年参赛的队伍最少?
(3)参赛的队伍上升得最快的是哪一年到哪一年?下降得最快呢?
全班交流,让学生说一说是怎么看的,怎么想的。
(三)、质疑再探
折线统计图有什么特点?你是怎么看出来的?思考:那么折线统计图和统计表相比,哪个能更清楚地看出参赛队伍的变化情况呢?为什么?师:你有什么感想?
(四)、拓展延伸
1.妈妈记录了陈东0~10岁的身高,根据下表中的数据绘制折线统计图。
出示统计图(没有描点),教师示范前两个点的画法。
学生尝试画图,并组织交流(让学生说一说制作折线统计图时,要注意些什么)。
提问:从这幅图中知道了什么?
提问:从图上看,陈东的身高有变化吗?你是怎么看出来的?
追问:为什么身高长的速度越来越慢?
(五)、课堂小结
人们在表示这些数据时可以选用折线统计图,折线统计图的特点是
不仅能够看出数量的多少,而且还能清楚地看出数量增减变化的情况。
小学五年级下册数学教学设计2
《长方体的认识》
一、教学目标:
1、教会学生认识长方体。
2、教会学生用纸壳动手做长方体。
3、使学生认识并理解长方体的长、宽、高。
4、培养学生的探索意识和实践能力。
5、培养学生初步的空间观念和空间想象力。
二、教学重点:
掌握长方体的特征,认识长方体的长、宽、高。
三、教学难点:
学生理解长方体相对的面完全相同的特点;体会棱与顶点的产生。
四、课前准备 :
长方体实物、长方体框架 教法学法 实践法、合作交流法
五、教学过程:
1、谈话引入。
在讲新课之前,我们先回忆一下,以前学过哪些几何图形?
提问:这些都是什么图形?(这些图形都是由线段围成的平面图形)
2、出示图。这些你看知道是什么吗?它们是什么图形?
提问:这些物体的形状还是平面图形吗?(不是)
老师:这些物体都占有一定的空间,它们的形状都是立体图形。
3、举例。
在日常生活中你还见到过哪些形状是长方体的物体?
正因为有了长方体,我们的世界才变得更加美妙神奇。这节课我们就一起走进长方体,来领略长方体的奥秘。
板书课题:长方体的认识 (老师根据学生回答,利用多媒体在计算机屏幕上显示下列图形。)
4、认识长方体的面、棱、顶点。
( 1)请学生拿出自己准备的长方体学具,摸一摸、说一说,你有什么发现?(长方体有平平的面)
( 2)再请学生摸一摸长方体相邻两个面相交的地方有什么?(边)
老师讲述:我们把这两个面相交的边叫做棱。板书:棱
( 3)再请同学摸一摸长方体三条棱相交的地方有什么?(有一个点)
老师:我们把三条棱相交的点叫做顶点。板书:顶点
( 4)师生在长方体教具上指出面、棱、顶点,学生依次说出名称。
老师说出顶点、面、棱的名称,学生迅速在学具上指出。
5、研究长方体的特征。
(1)师:面、棱、顶点里面还蕴藏着许多特征,你们想不想知道?
观察手中的长方体实物比一比,数一数,量一量,相信同学们一定会有许多惊喜的发现,你们有信心吗?
(2)生采用自学、小组讨论,同桌探讨等形式,从数量、形状、大小等方面研究长方体的特征。
(3)交流自己的发现
顶点有什么特点?(8个)棱有什么特点?(12条,怎样数不容易遗漏?相等的棱有怎样的位置关系?)
面有怎样的特征呢?(6个面。是长方形,面的大小关系怎样?)
长方体相对的面有怎样的特征呢?(面积相等,形状相同)
(4)投影出示两个长方形:这是两个面积同为90平方厘米的长方形,一个长是10厘米,宽是9厘米;另一个长是15厘米,宽是6厘米。它们可以做长方体相对的面吗?
6、教学长方体的长、宽、高。
(1)师:观察老师手中的长方体框架,如果把长方体的棱分组的话,你会怎样分?生思考并试着分一分。
(2)揭示概念:相交于一个顶点的三条棱和长度分别称之为长方体的长、宽、高。
(3)长、宽、高各有几条呢?(生试说)
(4)生试着指出手中长方体的长、宽、高。
(5)(变换长方体的摆法)现在它的长、宽、高呢?
(6)小结:虽然是同一个长方体,但摆法变了,长、宽、高也就随着发生变化。
(7)口诀:
长方体立体形,8顶6面十二棱;棱分长、宽、高,每组四条要记好;6
个面对着放,对应面都一样。
7、完成P19做一做
(1)做一个长方体
(2)观察并回答
总结 这节课你有何收获?
六、教学结束:
作业布置:要求学生回去动手做个长方体,下节课带来进行展示。
小学五年级下册数学教学设计3
《方程的意义》
教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标要求:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点:
理解并掌握方程的意义。
教学难点:
会列方程表示数量关系。
教学过程:
一、教学例1
1.出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
2.引导:
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
二、教学例2
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练
1、下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习
1.完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题
五、小结
今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
六、作业
完成补充习题
板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程
小学五年级下册数学教学设计4
《旋 转》
教学内容:教材第5~5页例3和例题4。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
5.课内练习:
2.第6页2题。
3.第9页4题、
课后作业:
板书设计: 旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学反思:
小学五年级下册数学教学设计5
《因数和倍数》
一、教学内容
1.因数和倍数
2.2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
1.精简概念,减轻学生记忆负担。
三方面的调整:
A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
四、具体编排
1.因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――_猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3.质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
五、教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2.要注意培养学生的抽象思维能力。